Search results

1 – 10 of 271
Content available
Article
Publication date: 12 April 2022

Monica Puri Sikka, Alok Sarkar and Samridhi Garg

With the help of basic physics, the application of computer algorithms in the form of recent advances such as machine learning and neural networking in textile Industry has been…

1495

Abstract

Purpose

With the help of basic physics, the application of computer algorithms in the form of recent advances such as machine learning and neural networking in textile Industry has been discussed in this review. Scientists have linked the underlying structural or chemical science of textile materials and discovered several strategies for completing some of the most time-consuming tasks with ease and precision. Since the 1980s, computer algorithms and machine learning have been used to aid the majority of the textile testing process. With the rise in demand for automation, deep learning, and neural networks, these two now handle the majority of testing and quality control operations in the form of image processing.

Design/methodology/approach

The state-of-the-art of artificial intelligence (AI) applications in the textile sector is reviewed in this paper. Based on several research problems and AI-based methods, the current literature is evaluated. The research issues are categorized into three categories based on the operation processes of the textile industry, including yarn manufacturing, fabric manufacture and coloration.

Findings

AI-assisted automation has improved not only machine efficiency but also overall industry operations. AI's fundamental concepts have been examined for real-world challenges. Several scientists conducted the majority of the case studies, and they confirmed that image analysis, backpropagation and neural networking may be specifically used as testing techniques in textile material testing. AI can be used to automate processes in various circumstances.

Originality/value

This research conducts a thorough analysis of artificial neural network applications in the textile sector.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 5 April 2023

Khaoula Assadi, Jihane Ben Slimane, Hanene Chalandi and Salah Salhi

This study aims to focus on an adaptive method for fault detection and classification of fault types that trigger in three-phase transmission lines using artificial neural…

Abstract

Purpose

This study aims to focus on an adaptive method for fault detection and classification of fault types that trigger in three-phase transmission lines using artificial neural networks (ANNs). The proposed scheme can detect and classify several types of faults, including line-to-ground, line-to-line, double-line-to-ground, triple-line and triple-line-to-ground faults.

Design/methodology/approach

The fundamental components of three-phase current and voltage were used as inputs in the ANNs. An analysis of the impact of variations in the fault resistance, fault type and fault inception time was conducted to evaluate the ANNs performance. The survey compares the performance of the multi-layer perceptron neural network (MLPNN) and Elman recurrent neural network trained with the backpropagation learning technique to improve each of the three phases of the fault detection and classification process. A detailed analysis validates the choice of the ANNs architecture based on the variation in the number of hidden neurons in each step.

Findings

The mean square error, root mean square error, mean absolute error and linear regression are measured to improve the efficiency of the ANN models for both fault detection and classification. The results indicate that the MLPNN can detect and classify faults with a satisfactory performance.

Originality/value

The smart adaptive scheme is fast and accurate for fault detection and classification in a single circuit transmission line when faced with different conditions and can be useful for transmission line protection schemes.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Book part
Publication date: 18 January 2024

Ramful Raviduth

The consideration of alternative sources of material for construction is imperative to reduce the environmental impacts as two-fifths of the carbon footprint of materials is…

Abstract

The consideration of alternative sources of material for construction is imperative to reduce the environmental impacts as two-fifths of the carbon footprint of materials is attributed to the construction industry. One alternative material with improved biodegradable attributes which can contribute to carbon offset is bamboo. The commercialisation of bamboo in modern infrastructures has significant potential to address few of the Sustainable Development Goals (SDGs) itemised by the United Nations, namely SDG 9 about industry, innovation and infrastructure. Other SDGs covering sustainable cities and communities, responsible consumption and production and climate action are also indirectly addressed when utilising sustainable construction materials. Being a natural material however, the full commercialisation of materials such as bamboo is constrained by a lack of durability. Besides fracture mechanisms arising from load-induced cracks and thermal modification, the durability of bamboo material is greatly impaired by biotic and abiotic factors, which equally affect its natural rate of degradation, hence fracture behaviour. In first instance, this chapter outlines the various factors leading to the durability limitations in bamboo material due to load-induced cracks and natural degradation based on recent findings in this field from the author's own work and from past literature. Secondly, part of this chapter is devoted to a new approach of processing the surge of information about the varied aspects of bamboo durability by considering the powerful technique of artificial intelligence (AI), specifically the artificial neural network (ANN) for prediction modelling. Further use of AI-enabled technologies could have an impactful outcome on the life cycle assessment of bamboo-based structures to address the growing challenges outlined by the United Nations.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 7 March 2024

Manpreet Kaur, Amit Kumar and Anil Kumar Mittal

In past decades, artificial neural network (ANN) models have revolutionised various stock market operations due to their superior ability to deal with nonlinear data and garnered…

Abstract

Purpose

In past decades, artificial neural network (ANN) models have revolutionised various stock market operations due to their superior ability to deal with nonlinear data and garnered considerable attention from researchers worldwide. The present study aims to synthesize the research field concerning ANN applications in the stock market to a) systematically map the research trends, key contributors, scientific collaborations, and knowledge structure, and b) uncover the challenges and future research areas in the field.

Design/methodology/approach

To provide a comprehensive appraisal of the extant literature, the study adopted the mixed approach of quantitative (bibliometric analysis) and qualitative (intensive review of influential articles) assessment to analyse 1,483 articles published in the Scopus and Web of Science indexed journals during 1992–2022. The bibliographic data was processed and analysed using VOSviewer and R software.

Findings

The results revealed the proliferation of articles since 2018, with China as the dominant country, Wang J as the most prolific author, “Expert Systems with Applications” as the leading journal, “computer science” as the dominant subject area, and “stock price forecasting” as the predominantly explored research theme in the field. Furthermore, “portfolio optimization”, “sentiment analysis”, “algorithmic trading”, and “crisis prediction” are found as recently emerged research areas.

Originality/value

To the best of the authors’ knowledge, the current study is a novel attempt that holistically assesses the existing literature on ANN applications throughout the entire domain of stock market. The main contribution of the current study lies in discussing the challenges along with the viable methodological solutions and providing application area-wise knowledge gaps for future studies.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Open Access
Article
Publication date: 23 January 2023

Hussein Y.H. Alnajjar and Osman Üçüncü

Artificial intelligence (AI) models are demonstrating day by day that they can find long-term solutions to improve wastewater treatment efficiency. Artificial neural networks…

1117

Abstract

Purpose

Artificial intelligence (AI) models are demonstrating day by day that they can find long-term solutions to improve wastewater treatment efficiency. Artificial neural networks (ANNs) are one of the most important of these models, and they are increasingly being used to forecast water resource variables. The goal of this study was to create an ANN model to estimate the removal efficiency of biological oxygen demand (BOD), total nitrogen (TN), total phosphorus (TP) and total suspended solids (TSS) at the effluent of various primary and secondary treatment methods in a wastewater treatment plant (WWTP).

Design/methodology/approach

The MATLAB App Designer model was used to generate the data set. Various combinations of wastewater quality data, such as temperature(T), TN, TP and hydraulic retention time (HRT) are used as inputs into the ANN to assess the degree of effect of each of these variables on BOD, TN, TP and TSS removal efficiency. Two of the models reflect two different types of primary treatment, while the other nine models represent different types of subsequent treatment. The ANN model’s findings are compared to the MATLAB App Designer model. For evaluating model performance, mean square error (MSE) and coefficient of determination statistics (R2) are utilized as comparative metrics.

Findings

For both training and testing, the R values for the ANN models were greater than 0.99. Based on the comparisons, it was discovered that the ANN model can be used to estimate the removal efficiency of BOD, TN, TP and TSS in WWTP and that the ANN model produces very similar and satisfying results to the APPDESIGNER model. The R-value (Correlation coefficient) of 0.9909 and the MSE of 5.962 indicate that the model is accurate. Because of the many benefits of the ANN models used in this study, it has a lot of potential as a general modeling tool for a range of other complicated process systems that are difficult to solve using conventional modeling techniques.

Originality/value

The objective of this study was to develop an ANN model that could be used to estimate the removal efficiency of pollutants such as BOD, TN, TP and TSS at the effluent of various primary and secondary treatment methods in a WWTP. In the future, the ANN could be used to design a new WWTP and forecast the removal efficiency of pollutants.

Details

Arab Gulf Journal of Scientific Research, vol. 41 no. 4
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 17 March 2023

Le Wang, Liping Zou and Ji Wu

This paper aims to use artificial neural network (ANN) methods to predict stock price crashes in the Chinese equity market.

Abstract

Purpose

This paper aims to use artificial neural network (ANN) methods to predict stock price crashes in the Chinese equity market.

Design/methodology/approach

Three ANN models are developed and compared with the logistic regression model.

Findings

Results from this study conclude that the ANN approaches outperform the traditional logistic regression model, with fewer hidden layers in the ANN model having superior performance compared to the ANNs with multiple hidden layers. Results from the ANN approach also reveal that foreign institutional ownership, financial leverage, weekly average return and market-to-book ratio are the important variables when predicting stock price crashes, consistent with results from the traditional logistic model.

Originality/value

First, the ANN framework has been used in this study to forecast the stock price crashes and compared to the traditional logistic model in the world’s largest emerging market China. Second, the receiver operating characteristics curves and the area under the ROC curve have been used to evaluate the forecasting performance between the ANNs and the traditional approaches, in addition to some traditional performance evaluation methods.

Details

Pacific Accounting Review, vol. 35 no. 4
Type: Research Article
ISSN: 0114-0582

Keywords

Article
Publication date: 27 June 2023

Nirodha Fernando, Kasun Dilshan T.A. and Hexin (Johnson) Zhang

The Government’s investment in infrastructure projects is considerably high, especially in bridge construction projects. Government authorities must establish an initial…

Abstract

Purpose

The Government’s investment in infrastructure projects is considerably high, especially in bridge construction projects. Government authorities must establish an initial forecasted budget to have transparency in transactions. Early cost estimating is challenging for Quantity Surveyors due to incomplete project details at the initial stage and the unavailability of standard cost estimating techniques for bridge projects. To mitigate the difficulties in the traditional preliminary cost estimating methods, there is a requirement to develop a new initial cost estimating model which is accurate, user friendly and straightforward. The research was carried out in Sri Lanka, and this paper aims to develop the artificial neural network (ANN) model for an early cost estimate of concrete bridge systems.

Design/methodology/approach

The construction cost data of 30 concrete bridge projects which are in Sri Lanka constructed within the past ten years were trained and tested to develop an ANN cost model. Backpropagation technique was used to identify the number of hidden layers, iteration and momentum for optimum neural network architectures.

Findings

An ANN cost model was developed, furnishing the best result since it succeeded with around 90% validation accuracy. It created a cost estimation model for the public sector as an accurate, heuristic, flexible and efficient technique.

Originality/value

The research contributes to the current body of knowledge by providing the most accurate early-stage cost estimate for the concrete bridge systems in Sri Lanka. In addition, the research findings would be helpful for stakeholders and policymakers to propose policy recommendations that positively influence the prediction of the most accurate cost estimate for concrete bridge construction projects in Sri Lanka and other developing countries.

Details

Journal of Financial Management of Property and Construction , vol. 29 no. 1
Type: Research Article
ISSN: 1366-4387

Keywords

Article
Publication date: 10 October 2023

Visar Hoxha

The purpose of the study is to examine the efficiency of linear, nonlinear and artificial neural networks (ANNs), in predicting property prices.

Abstract

Purpose

The purpose of the study is to examine the efficiency of linear, nonlinear and artificial neural networks (ANNs), in predicting property prices.

Design/methodology/approach

The present study uses a dataset of 1,468 real estate transactions from 2020 to 2022, obtained from the Department of Property Taxes of Republic of Kosovo. Beginning with a fundamental linear regression model, the study tackles the question of overlooked nonlinearity, employing a similar strategy like Peterson and Flanagan (2009) and McCluskey et al. (2012), whereby ANN's predictions are incorporated as an additional regressor within the ordinary least squares (OLS) model.

Findings

The research findings underscore the superior fit of semi-log and double-log models over the OLS model, while the ANN model shows moderate performance, contrary to the conventional conviction of ANN's superior predictive power. This is notably divergent from the prevailing belief about ANN's superior predictive power, shedding light on the potential overestimation of ANN's efficacy.

Practical implications

The study accentuates the importance of embracing diverse models in property price prediction, debunking the notion of the ubiquitous applicability of ANN models. The research outcomes carry substantial ramifications for both scholars and professionals engaged in property valuation.

Originality/value

Distinctively, this research pioneers the comparative analysis of diverse models, including ANN, in the setting of a developing country's capital, hence providing a fresh perspective to their effectiveness in property price prediction.

Article
Publication date: 27 February 2023

Sameer Kumar, Yogesh Marawar, Gunjan Soni, Vipul Jain, Anand Gurumurthy and Rambabu Kodali

Lean manufacturing (LM) is prevalent in the manufacturing industry; thus, focusing on fast and accurate lean tool implementation is the new paradigm in manufacturing. Value stream…

Abstract

Purpose

Lean manufacturing (LM) is prevalent in the manufacturing industry; thus, focusing on fast and accurate lean tool implementation is the new paradigm in manufacturing. Value stream mapping (VSM) is one of the many LM tools. It is understood that combining LM implementation with VSM tools can generate better outcomes. This paper aims to develop an expert system for optimal sequencing of VSM tools for lean implementation.

Design/methodology/approach

A proposed artificial neural network (ANN) model is based on the analytic network process (ANP) devised for this study. It will facilitate the selection of VSM tools in an optimal sequence.

Findings

Considering different types of wastes and their level of occurrence, organizations need a set of specific tools that will be effective in the elimination of these wastes. The developed ANP model computes a level of interrelation between wastes and VSM tools. The ANN is designed and trained by data obtained from numerous case studies, so it can predict the accurate sequence of VSM tools for any new case data set.

Originality/value

The design and use of the ANN model provide an integrated result of both empirical and practical cases, which is more accurate because all viable aspects are then considered. The proposed modeling approach is validated through implementation in an automobile manufacturing company. It has resulted in benefits, namely, reduction in bias, time required, effort required and complexity of the decision process. More importantly, according to all performance criteria and subcriteria, the main goal of this research was satisfied by increasing the accuracy of selecting the appropriate VSM tools and their optimal sequence for lean implementation.

Details

International Journal of Lean Six Sigma, vol. 14 no. 7
Type: Research Article
ISSN: 2040-4166

Keywords

Content available
Book part
Publication date: 18 January 2024

Abstract

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

1 – 10 of 271