Search results

1 – 10 of 52
Article
Publication date: 15 April 2024

Xiaona Wang, Jiahao Chen and Hong Qiao

Limited by the types of sensors, the state information available for musculoskeletal robots with highly redundant, nonlinear muscles is often incomplete, which makes the control…

Abstract

Purpose

Limited by the types of sensors, the state information available for musculoskeletal robots with highly redundant, nonlinear muscles is often incomplete, which makes the control face a bottleneck problem. The aim of this paper is to design a method to improve the motion performance of musculoskeletal robots in partially observable scenarios, and to leverage the ontology knowledge to enhance the algorithm’s adaptability to musculoskeletal robots that have undergone changes.

Design/methodology/approach

A memory and attention-based reinforcement learning method is proposed for musculoskeletal robots with prior knowledge of muscle synergies. First, to deal with partially observed states available to musculoskeletal robots, a memory and attention-based network architecture is proposed for inferring more sufficient and intrinsic states. Second, inspired by muscle synergy hypothesis in neuroscience, prior knowledge of a musculoskeletal robot’s muscle synergies is embedded in network structure and reward shaping.

Findings

Based on systematic validation, it is found that the proposed method demonstrates superiority over the traditional twin delayed deep deterministic policy gradients (TD3) algorithm. A musculoskeletal robot with highly redundant, nonlinear muscles is adopted to implement goal-directed tasks. In the case of 21-dimensional states, the learning efficiency and accuracy are significantly improved compared with the traditional TD3 algorithm; in the case of 13-dimensional states without velocities and information from the end effector, the traditional TD3 is unable to complete the reaching tasks, while the proposed method breaks through this bottleneck problem.

Originality/value

In this paper, a novel memory and attention-based reinforcement learning method with prior knowledge of muscle synergies is proposed for musculoskeletal robots to deal with partially observable scenarios. Compared with the existing methods, the proposed method effectively improves the performance. Furthermore, this paper promotes the fusion of neuroscience and robotics.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 5 December 2023

Zhirui Zhao, Lina Hao, Guanghong Tao, Hongjun Liu and Lihua Shen

This study discusses the tracking trajectory issue of the exoskeleton under the bounded disturbance and designs an useful tracking trajectory control method to solve it. By using…

129

Abstract

Purpose

This study discusses the tracking trajectory issue of the exoskeleton under the bounded disturbance and designs an useful tracking trajectory control method to solve it. By using the proposed control method, the tracking error can be successfully convergence to the assigned boundary. Meanwhile, the chattering effect caused by the actuators is already reduced, and the tracking performance of the pneumatic artificial muscles (PAMs) elbow exoskeleton is improved effectively.

Design/methodology/approach

A prescribed performance sliding mode control method was developed in this study to fulfill the joint position tracking trajectory task on the elbow exoskeleton driven by two PAMs. In terms of the control structure, a dynamic model was built by conforming to the adaptive law to compensate for the time variety and uncertainty exhibited by the system. Subsequently, a super-twisting algorithm-based second-order sliding mode control method was subjected to the exoskeleton under the boundedness of external disturbance. Moreover, the prescribed performance control method exhibits a smooth prescribed function with an error transformation function to ensure the tracking error can be finally convergent to the pre-designed requirement.

Findings

From the theoretical perspective, the stability of the control method was verified through Lyapunov synthesis. On that basis, the tracking performance of the proposed control method was confirmed through the simulation and the manikin model experiment.

Originality/value

As revealed by the results of this study, the proposed control method sufficiently applies to the PAMs elbow exoskeleton for tracking trajectory, which means it has potential application in the actual robot-assisted passive rehabilitation tasks.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 December 2023

Jiaoli Piao, Yehyoun Kim, Ru Han, Darinka Popov and Sumin Koo

An increasing aging population and an increasing number of people suffering from musculoskeletal disorders have increased the demand for wearable robots. Comfortable, wearable…

Abstract

Purpose

An increasing aging population and an increasing number of people suffering from musculoskeletal disorders have increased the demand for wearable robots. Comfortable, wearable robots that can be worn like clothing are currently being investigated. However, the embedded components may be displaced owing to the flexibility of the fabrics, which can lower the sensing accuracy and limit natural body movements. This study aims to develop clothing-type wearable platforms to minimize the displacement of embedded components such as sensors and actuators while maintaining comfort.

Design/methodology/approach

Four designs were developed using materials with different seam lines, that can serve as anchoring details, and flatlock stitches considering body movements and musculoskeletal structures. The wear evaluation experiment was filmed using a speed camera and analyzed using the TimeViewer software and SPSS 26.0. Based on these results, four clothing-type wearable platform designs were developed.

Findings

The variation in the location of a point in the armhole among the designs was marginal. Participants were satisfied with the functionality, practicality, wearability, efficiency and ease of use of the developed designs. A final clothing-type wearable platform was developed by applying a design with the least change in location, a suitable design for each area and wear comfort.

Originality/value

The results of this study contribute to the development of wearable robots by establishing clothing design data to minimize changes in sensor and actuator movements.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 18 September 2023

Yali Han, Shunyu Liu, Jiachen Chang, Han Sun, Shenyan Li, Haitao Gao and Zhuangzhuang Jin

This paper aims to propose a novel system design and control algorithm of lower limb exoskeleton, which provides walking assistance and load sharing for the wearer.

Abstract

Purpose

This paper aims to propose a novel system design and control algorithm of lower limb exoskeleton, which provides walking assistance and load sharing for the wearer.

Design/methodology/approach

In this paper, the valve-controlled asymmetrical hydraulic cylinder is selected for driving the hip and knee joint of exoskeleton. Pressure shoe is developed that purpose on detecting changes in plantar force, and a fuzzy recognition algorithm using plantar pressure is proposed. Dynamic model of the exoskeleton is established, and the sliding mode control is developed to implement the position tracking of exoskeleton. A series of prototype experiments including benchtop test, full assistance, partial assistance and loaded walking experiments are set up to verify the tracking performance and power-assisted effect of the proposed exoskeleton.

Findings

The control performance of PID control and sliding mode control are compared. The experimental data shows the tracking trajectories and tracking errors of sliding mode control and demonstrate its good robustness to nonlinearities. sEMG of the gastrocnemius muscle tends to be significantly weakened during assisted walking.

Originality/value

In this paper, a structure that the knee joint and hip joint driven by the valve-controlled asymmetrical cylinder is used to provide walking assistance for the wearer. The sliding mode control is proposed to deal with the nonlinearities during joint rotation and fluids. It shows great robustness and frequency adaptability through experiments under different motion frequencies and assistance modes. The design and control method of exoskeleton is a good attempt, which takes positive impacts on the productivity or quality of the life of wearers.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 January 2024

Yuepeng Zhang, Guangzhong Cao, Linglong Li and Dongfeng Diao

The purpose of this paper is to design a new trajectory error compensation method to improve the trajectory tracking performance and compliance of the knee exoskeleton in…

Abstract

Purpose

The purpose of this paper is to design a new trajectory error compensation method to improve the trajectory tracking performance and compliance of the knee exoskeleton in human–exoskeleton interaction motion.

Design/methodology/approach

A trajectory error compensation method based on admittance-extended Kalman filter (AEKF) error fusion for human–exoskeleton interaction control. The admittance controller is used to calculate the trajectory error adjustment through the feedback human–exoskeleton interaction force, and the actual trajectory error is obtained through the encoder feedback of exoskeleton and the designed trajectory. By using the fusion and prediction characteristics of EKF, the calculated trajectory error adjustment and the actual error are fused to obtain a new trajectory error compensation, which is feedback to the knee exoskeleton controller. This method is designed to be capable of improving the trajectory tracking performance of the knee exoskeleton and enhancing the compliance of knee exoskeleton interaction.

Findings

Six volunteers conducted comparative experiments on four different motion frequencies. The experimental results show that this method can effectively improve the trajectory tracking performance and compliance of the knee exoskeleton in human–exoskeleton interaction.

Originality/value

The AEKF method first uses the data fusion idea to fuse the estimated error with measurement errors, obtaining more accurate trajectory error compensation for the knee exoskeleton motion control. This work provides great benefits for the trajectory tracking performance and compliance of lower limb exoskeletons in human–exoskeleton interaction movements.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 23 April 2024

Jiwon Chung, Hyunbin Won, Hannah Lee, Soah Park, Hyewon Ahn, Suhyun Pyeon, Jeong Eun Yoon and Sumin Koo

The objective of this study was to develop wearable suit platforms with various anchoring structure designs with the intention of improving wearability and enhancing user…

Abstract

Purpose

The objective of this study was to develop wearable suit platforms with various anchoring structure designs with the intention of improving wearability and enhancing user satisfaction.

Design/methodology/approach

This study selected fabrics and materials for the suit platform through material performance tests. Two anchoring structure designs, 11-type and X-type are compared with regular clothing under control conditions. To evaluate the comfort level of the wearable suit platform, a satisfaction survey and electroencephalogram (EEG) measurements are conducted to triangulate the findings.

Findings

The 11-type exhibited higher values in comfort indicators such as α, θ, α/High-β and lower values in concentration or stress indicators such as β, ϒ, sensorimotor rhythm (SMR)+Mid-β/θ, and a spectral edge frequency of 95% compared to the X-type while walking. The 11-type offers greater comfort and satisfaction compared to the X-type when lifting based on the EEG measurements and the participants survey.

Originality/value

It is recommended to implement the 11-type when designing wearable suit platforms. These findings offer essential data on wearability, which can guide the development of soft wearable robots.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 22 April 2024

Hesham Mohsen Hussein Omar, Mohamed Fawzy Aly Mohamed and Said Megahed

The purpose of this paper is to investigate the process of fused filament fabrication (FFF) of a compliant gripper (CG) using thermoplastic polyurethane (TPU) material. The paper…

Abstract

Purpose

The purpose of this paper is to investigate the process of fused filament fabrication (FFF) of a compliant gripper (CG) using thermoplastic polyurethane (TPU) material. The paper studies the applicability of different CG designs and the efficiency of some design parameters.

Design/methodology/approach

After reviewing a number of different papers, two designs were selected for a number of exploratory experiments. Using design of experiments (DOE) techniques to identify important design parameters. Finally, the efficiency of the parts was investigated.

Findings

The research finds that a simpler design sacrifices some effectiveness in exchange for a remarkable decrease in production cost. Decreasing infill percentage of previous designs and 3D printing them, out of TPU, experimenting with different parameters yields functional products. Moreover, the paper identified some key parameters for further optimization attempts of such prototypes.

Research limitations/implications

The cost of conducting FFF experiments for TPU increases dramatically with product size, number of parameters studied and the number of experiments. Therefore, all three of these factors had to be kept at a minimum. Further confirmatory experiments encouraged.

Originality/value

This paper addresses an identified need to investigate applications of FFF and TPU in manufacturing functional efficient flexible mechanisms, grippers specifically. While most research focused on designing for increased performance, some research lacks discussion on design philosophy, as well as manufacturing issues. As the needs for flexible grippers vary from high-performance grippers to lower performance grippers created for specific functions/conditions, some effectiveness can be sacrificed to reduce cost, reduce complexity and improve applicability in different robotic assemblies and environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 April 2024

Yiwei Zhang, Daochun Li, Zi Kan, Zhuoer Yao and Jinwu Xiang

This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work…

Abstract

Purpose

This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work because of the severe sea conditions, high demand for accuracy and non-linearity and maneuvering coupling of the aircraft. Consequently, the automatic carrier landing system raises the need for a control scheme that combines high robustness, rapidity and accuracy. In addition, to exploit the capability of the proposed control scheme and alleviate the difficulty of manual parameter tuning, a control parameter optimizer is constructed.

Design/methodology/approach

A novel reference model is constructed by considering the desired state and the actual state as constrained generalized relative motion, which works as a virtual terminal spring-damper system. An improved particle swarm optimization algorithm with dynamic boundary adjustment and Pareto set analysis is introduced to optimize the control parameters.

Findings

The control parameter optimizer makes it efficient and effective to obtain well-tuned control parameters. Furthermore, the proposed control scheme with the optimized parameters can achieve safe carrier landings under various severe sea conditions.

Originality/value

The proposed control scheme shows stronger robustness, accuracy and rapidity than sliding-mode control and Proportion-integration-differentiation (PID). Also, the small number and efficiency of control parameters make this paper realize the first simultaneous optimization of all control parameters in the field of flight control.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 June 2023

Yao-Chin Wang and Muzaffer Uysal

Following the increasing trend of artificial intelligence (AI) research in hospitality literature, this critical reflection paper aims to identify AI-assisted mindfulness as a…

1379

Abstract

Purpose

Following the increasing trend of artificial intelligence (AI) research in hospitality literature, this critical reflection paper aims to identify AI-assisted mindfulness as a critical yet under-investigated issue and to contribute feasible directions for future research.

Design/methodology/approach

The authors first conceptualize a framework explaining the effects of mindfulness design in AI interventions on improving human mindfulness. The authors then identify opportunities for interventions in AI-assisted mindfulness for the tourism, hospitality and events industries. Finally, the authors propose potential themes for AI-assisted mindfulness research.

Findings

This study contributes three major conceptual works. First, we conceptualize a framework of AI-assisted mindfulness, showcasing that the scope of AI-assisted mindfulness spans from AI interventions to state mindfulness and then to trait mindfulness. Second, the authors offer two approaches to strategic thinking, one from mindfulness (i.e. mindfulness-focused niche markets and activities) and one from AI applications (i.e. AI-facilitated devices and platforms), to identify opportunities for AI-assisted mindfulness interventions. Third, for both management- and marketing-oriented AI-assisted mindfulness research, the authors propose 18 themes.

Research limitations/implications

This critical reflection paper offers directions for future knowledge creation in AI-assisted mindfulness in the tourism, hospitality and events industries.

Originality/value

To the best of the authors’ knowledge, this critical reflection paper serves as the first in hospitality and tourism literature to systematically propose the research issue of AI-assisted mindfulness, offering directions and themes for future research.

Details

International Journal of Contemporary Hospitality Management, vol. 36 no. 4
Type: Research Article
ISSN: 0959-6119

Keywords

1 – 10 of 52