Search results

1 – 7 of 7
Content available
Article
Publication date: 7 March 2016

Božidar Šarler, Nicola Massarotti and P Nithiarasu

200

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 2
Type: Research Article
ISSN: 0961-5539

Content available
Article
Publication date: 19 September 2008

P. Nithiarasu

531

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 7/8
Type: Research Article
ISSN: 0961-5539

Content available
Article
Publication date: 12 October 2012

222

Abstract

Details

Industrial Robot: An International Journal, vol. 39 no. 6
Type: Research Article
ISSN: 0143-991X

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 5
Type: Research Article
ISSN: 0961-5539

Open Access
Article
Publication date: 8 May 2018

Aidan Jungo, Mengmeng Zhang, Jan B. Vos and Arthur Rizzi

The purpose of this paper is to present the status of the on-going development of the new computerized environment for aircraft synthesis and integrated optimization methods

2196

Abstract

Purpose

The purpose of this paper is to present the status of the on-going development of the new computerized environment for aircraft synthesis and integrated optimization methods (CEASIOM) and to compare results of different aerodynamic tools. The concurrent design of aircraft is an extremely interdisciplinary activity incorporating simultaneous consideration of complex, tightly coupled systems, functions and requirements. The design task is to achieve an optimal integration of all components into an efficient, robust and reliable aircraft with high performance that can be manufactured with low technical and financial risks, and has an affordable life-cycle cost.

Design/methodology/approach

CEASIOM (www.ceasiom.com) is a framework that integrates discipline-specific tools like computer-aided design, mesh generation, computational fluid dynamics (CFD), stability and control analysis and structural analysis, all for the purpose of aircraft conceptual design.

Findings

A new CEASIOM version is under development within EU Project AGILE (www.agile-project.eu), by adopting the CPACS XML data-format for representation of all design data pertaining to the aircraft under development.

Research limitations/implications

Results obtained from different methods have been compared and analyzed. Some differences have been observed; however, they are mainly due to the different physical modelizations that are used by each of these methods.

Originality/value

This paper summarizes the current status of the development of the new CEASIOM software, in particular for the following modules: CPACS file visualizer and editor CPACSupdater (Matlab) Automatic unstructured (Euler) & hybrid (RANS) mesh generation by sumo Multi-fidelity CFD solvers: Digital Datcom (Empirical), Tornado (VLM), Edge-Euler & SU2-Euler, Edge-RANS & SU2-RANS Data fusion tool: aerodynamic coefficients fusion from variable fidelity CFD tools above to compile complete aero-table for flight analysis and simulation.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Content available
Article
Publication date: 1 March 1999

David Johnson

206

Abstract

Details

Library Hi Tech News, vol. 16 no. 3
Type: Research Article
ISSN: 0741-9058

Content available

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 1
Type: Research Article
ISSN: 0961-5539

Access

Only content I have access to

Year

Content type

1 – 7 of 7