Search results

21 – 30 of 506
Article
Publication date: 1 June 2015

V Moorthy, P Sangameswararaju, S Ganesan and S Subramanian

The purpose of the paper is to solve hydrothermal scheduling (HTS) problem for energy-efficient management by allocating the optimal real power outputs for thermal and…

Abstract

Purpose

The purpose of the paper is to solve hydrothermal scheduling (HTS) problem for energy-efficient management by allocating the optimal real power outputs for thermal and hydroelectric generators.

Design/methodology/approach

HTS can be formulated as a complex and non-linear optimization problem which minimizes the total fuel cost and emissions of thermal generators subject to various physical and operational constraints. As the artificial bee colony algorithm has proven its ability to solve various engineering optimization problems, it has been used as a main optimization tool to solve the fixed-head HTS problem.

Findings

A meta-heuristic search technique-based algorithm has been implemented for hydrothermal energy management, and the simulation results show that this approach can provide trade-off between conflict objectives and keep a rapid convergence speed.

Originality/value

The proposed methodology is implemented on the standard test system, and the numerical results comparison indicates a considerable saving in total fuel cost and reduction in emission.

Details

International Journal of Energy Sector Management, vol. 9 no. 2
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 20 December 2017

Kaigang Yi, Tinggui Chen and Guodong Cong

Nowadays, database management system has been applied in library management, and a great number of data about readers’ visiting history to resources have been accumulated by…

1309

Abstract

Purpose

Nowadays, database management system has been applied in library management, and a great number of data about readers’ visiting history to resources have been accumulated by libraries. A lot of important information is concealed behind such data. The purpose of this paper is to use a typical data mining (DM) technology named an association rule mining model to find out borrowing rules of readers according to their borrowing records, and to recommend other booklists for them in a personalized way, so as to increase utilization rate of data resources at library.

Design/methodology/approach

Association rule mining algorithm is applied to find out borrowing rules of readers according to their borrowing records, and to recommend other booklists for them in a personalized way, so as to increase utilization rate of data resources at library.

Findings

Through an analysis on record of book borrowing by readers, library manager can recommend books that may be interested by a reader based on historical borrowing records or current book-borrowing records of the reader.

Research limitations/implications

If many different categories of book-borrowing problems are involved, it will result in large length of encoding as well as giant searching space. Therefore, future research work may be considered in the following aspects: introduce clustering method; and apply association rule mining method to procurement of book resources and layout of books.

Practical implications

The paper provides a helpful inspiration for Big Data mining and software development, which will improve their efficiency and insight on users’ behavior and psychology.

Social implications

The paper proposes a framework to help users understand others’ behavior, which will aid them better take part in group and community with more contribution and delightedness.

Originality/value

DM technology has been used to discover information concealed behind Big Data in library; the library personalized recommendation problem has been analyzed and formulated deeply; and a method of improved association rules combined with artificial bee colony algorithm has been presented.

Details

Library Hi Tech, vol. 36 no. 3
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 25 February 2014

Yen-Ning Su, Chia-Cheng Hsu, Hsin-Chin Chen, Kuo-Kuang Huang and Yueh-Min Huang

This study aims to use sensing technology to observe the learning status of learners in a teaching and learning environment. In a general instruction environment, teachers often…

Abstract

Purpose

This study aims to use sensing technology to observe the learning status of learners in a teaching and learning environment. In a general instruction environment, teachers often encounter some teaching problems. These are frequently related to the fact that the teacher cannot clearly know the learning status of students, such as their degree of learning concentration and capacity to absorb knowledge. In order to deal with this situation, this study uses a learning concentration detection system (LCDS), combining sensor technology and an artificial intelligence method, to better understand the learning concentration of students in a learning environment.

Design/methodology/approach

The proposed system uses sensing technology to collect information about the learning behavior of the students, analyzes their concentration levels, and applies an artificial intelligence method to combine this information for use by the teacher. This system includes a pressure detection sensor and facial detection sensor to detect facial expressions, eye activities and body movements. The system utilizes an artificial bee colony (ABC) algorithm to optimize the system performance to help teachers immediately understand the degree of concentration and learning status of their students. Based on this, instructors can give appropriate guidance to several unfocused students at the same time.

Findings

The fitness value and computation time were used to evaluate the LCDS. Comparing the results of the proposed ABC algorithm with those from the random search method, the algorithm was found to obtain better solutions. The experimental results demonstrate that the ABC algorithm can quickly obtain near optimal solutions within a reasonable time.

Originality/value

A learning concentration detection method of integrating context-aware technologies and an ABC algorithm is presented in this paper. Using this learning concentration detection method, teachers can keep abreast of their students' learning status in a teaching environment and thus provide more appropriate instruction.

Details

Engineering Computations, vol. 31 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 October 2017

Siqi Dou, Junjie Li and Fei Kang

Parameter identification is an important issue in structural health monitoring and damage identification for concrete dams. The purpose of this paper is to introduce a novel…

Abstract

Purpose

Parameter identification is an important issue in structural health monitoring and damage identification for concrete dams. The purpose of this paper is to introduce a novel adaptive fireworks algorithm (AFWA) into inverse analysis of parameter identification.

Design/methodology/approach

Swarm intelligence algorithms and finite element analysis are integrated to identify parameters of hydraulic structures. Three swarm intelligence algorithms: AFWA, standard particle swarm optimization (SPSO) and artificial bee colony algorithm (ABC) are adopted to make a comparative study. These algorithms are introduced briefly and then tested by four standard benchmark functions. Inverse analysis methods based on AFWA, SPSO and ABC are adopted to identify Young’s modulus of a concrete gravity dam and a concrete arch dam.

Findings

Numerical results show that swarm intelligence algorithms are powerful tools for parameter identification of concrete structures. The proposed AFWA-based inverse analysis algorithm for concrete dams is promising in terms of accuracy and efficiency.

Originality/value

Fireworks algorithm is applied for inverse analysis of hydraulic structures for the first time, and the problem of parameter selection in AFWA is studied.

Article
Publication date: 20 April 2020

Nurcan Sarikaya Basturk and Abdurrahman Sahinkaya

The purpose of this paper is to present a detailed performance comparison of recent and state-of-the-art population-based optimization algorithms for the air traffic control…

Abstract

Purpose

The purpose of this paper is to present a detailed performance comparison of recent and state-of-the-art population-based optimization algorithms for the air traffic control problem.

Design/methodology/approach

Landing sequence and corresponding landing times for the aircrafts were determined by using population-based optimization algorithms such as artificial bee colony, particle swarm, differential evolution, biogeography-based optimization, simulated annealing, firefly and teaching–learning-based optimization. To obtain a fair comparison, all simulations were repeated 30 times for each of the seven algorithms, two different problems and two different population sizes, and many different criteria were used.

Findings

Compared to conventional methods that depend on a single solution at the same time, population-based algorithms have simultaneously produced many alternate possible solutions that can be used recursively to achieve better results.

Research limitations/implications

In some cases, it may take slightly longer to obtain the optimum landing sequence and times compared to the methods that give a direct result; however, the processing times can be reduced using powerful computers or GPU computations.

Practical implications

The simulation results showed that using population-based optimization algorithms were useful to obtain optimal landing sequence and corresponding landing times. Thus, the proposed air traffic control method can also be used effectively in real airport applications.

Social implications

By using population-based algorithms, air traffic control can be performed more effectively. In this way, there will be more efficient planning of passengers’ travel schedules and efficient airport operations.

Originality/value

The study compares the performances of recent and state-of-the-art optimization algorithms in terms of effective air traffic control and provides a useful approach.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 24 February 2012

Marisa da Silva Maximiano, Miguel A. Vega‐Rodríguez, Juan A. Gómez‐Pulido and Juan M. Sánchez‐Pérez

The purpose of this paper is to address a multiobjective FAP (frequency assignment problem) formulation. More precisely, two conflicting objectives – the interference cost and the…

Abstract

Purpose

The purpose of this paper is to address a multiobjective FAP (frequency assignment problem) formulation. More precisely, two conflicting objectives – the interference cost and the separation cost – are considered to characterize FAP as an MO (multiobjective optimization) problem.

Design/methodology/approach

The contribution to this specific telecommunication problem in a real scenario follows a recent approach, for which the authors have already accomplished some preliminary results. In this paper, a much more complete analysis is performed, including two well‐known algorithms (such as the NSGA‐II and SPEA2), with new results, new comparisons and statistical studies. More concretely, in this paper five different algorithms are presented and compared. The popular multiobjective algorithms, NSGA‐II and SPEA2, are compared against the Differential Evolution with Pareto Tournaments (DEPT) algorithm, the Greedy Multiobjective Variable Neighborhood Search (GMO‐VNS) algorithm and its variant Greedy Multiobjective Skewed Variable Neighborhood Search (GMO‐SVNS). Furthermore, the authors also contribute with a new design of multiobjective metaheuristic named Multiobjective Artificial Bee Colony (MO‐ABC) that is included in the comparison; it represents a new metaheuristic that the authors have developed to address FAP. The results were analyzed using two complementary indicators: the hypervolume indicator and the coverage relation. Two large‐scale real‐world mobile networks were used to validate the performance comparison made among several multiobjective metaheuristics.

Findings

The final results show that the multiobjective proposal is very competitive, clearly surpassing the results obtained by the well‐known multiobjective algorithms (NSGA‐II and SPEA2).

Originality/value

The paper provides a comparison among several multiobjective metaheuristics to solve FAP as a real‐life telecommunication engineering problem. A new multiobjective metaheuristic is also presented. Preliminary results were enhanced with two well‐known multiobjective algorithms. To the authors' knowledge, they have never been investigated for FAP.

Article
Publication date: 2 October 2018

Tugrul Oktay, Seda Arik, Ilke Turkmen, Metin Uzun and Harun Celik

The aim of this paper is to redesign of morphing unmanned aerial vehicle (UAV) using neural network for simultaneous improvement of roll stability coefficient and maximum…

Abstract

Purpose

The aim of this paper is to redesign of morphing unmanned aerial vehicle (UAV) using neural network for simultaneous improvement of roll stability coefficient and maximum lift/drag ratio.

Design/methodology/approach

Redesign of a morphing our UAV manufactured in Faculty of Aeronautics and Astronautics, Erciyes University is performed with using artificial intelligence techniques. For this purpose, an objective function based on artificial neural network (ANN) is obtained to get optimum values of roll stability coefficient (Clβ) and maximum lift/drag ratio (Emax). The aim here is to save time and obtain satisfactory errors in the optimization process in which the ANN trained with the selected data is used as the objective function. First, dihedral angle (φ) and taper ratio (λ) are selected as input parameters, C*lβ and Emax are selected as output parameters for ANN. Then, ANN is trained with selected input and output data sets. Training of the ANN is possible by adjusting ANN weights. Here, ANN weights are adjusted with artificial bee colony (ABC) algorithm. After adjusting process, the objective function based on ANN is optimized with ABC algorithm to get better Clβ and Emax, i.e. the ABC algorithm is used for two different purposes.

Findings

By using artificial intelligence methods for redesigning of morphing UAV, the objective function consisting of C*lβ and Emax is maximized.

Research limitations/implications

It takes quite a long time for Emax data to be obtained realistically by using the computational fluid dynamics approach.

Practical implications

Neural network incorporation with the optimization method idea is beneficial for improving Clβ and Emax. By using this approach, low cost, time saving and practicality in applications are achieved.

Social implications

This method based on artificial intelligence methods can be useful for better aircraft design and production.

Originality/value

It is creating a novel method in order to redesign of morphing UAV and improving UAV performance.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 23 September 2020

Ramachandran T., Surendarnath S. and Dharmalingam R.

Fixture layout design is concerned with immobilization of the workpiece (engine mount bracket) during machining such that the workpiece elastic deformation is reduced. The fixture…

Abstract

Purpose

Fixture layout design is concerned with immobilization of the workpiece (engine mount bracket) during machining such that the workpiece elastic deformation is reduced. The fixture holds the workpiece through the positioning of fixturing elements that causes the workpiece elastic deformation, in turn, leads to the form and dimensional errors and increased machining cost. The fixture layout has the major impact on the machining accuracy and is the function of the fixturing position. The position of the fixturing elements, key aspects, needed to be optimized to reduce the workpiece elastic deformation. The purpose of this study is to evaluate the optimized fixture layout for the machining of the engine mount bracket.

Design Methodology Approach

In this research work, using the finite element method (FEM), a model is developed in the MATLAB for the fixture-workpiece system so that the workpiece elastic deformation is determined. The artificial neural network (ANN) is used to develop an empirical model. The results of deformation obtained for different fixture layouts from FEM are used to train the ANN and finally the empirical model is developed. The model capable of predicting the deformation is embedded to the evolutionary optimization techniques, capable of finding local and global optima, to optimize the fixture layouts and to find the robust one.

Findings

For efficient optimization of the fixture layout parameters to obtain the least possible deformation, ant colony algorithm (ACA) and artificial bee colony algorithm (ABCA) are used and the results of deformation obtained from both the optimization techniques are compared for the best results.

Research Limitations Implications

A MATLAB-based FEM technique is able to provide solutions when the repeated modeling and simulations required i.e. modeling of fixture layouts (500 layouts) for every variation in the parameters requires individual modeling and simulation for the output requirement in any FEM-based software’s (ANSYS, ABACUS). This difficulty is reduced in this research. So that the MATLAB-based FEM modeling, simulation and optimization is carried out to determine the solutions for the optimized fixture layout to reach least deformation.

Practical Implications

Many a time the practicability of the machining/mechanical operations are difficult to perform costly and time-consuming when more number of experimentations are required. To sort out the difficulties the computer-based automated solution techniques are highly required. Such kind of research over this study is presented for the readers.

Originality Value

A MATLAB-based FEM modeling and simulation technique is used to obtain the fixture layout optimization. ANN-based empirical model is developed for the fixture layout deformation that creates a hypothesis for the fixture layout system. ACA and ABCA are used for optimizing the fixture layout parameters and are compared for the best algorithm suited for the fixture layout system.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 November 2017

Grasiele Regina Duarte, Afonso Celso de Castro Lemonge and Leonardo Goliatt da Fonseca

The purpose of this paper is to evaluate the performance of social spider algorithm (SSA) to solve constrained structural optimisation problems and to compare its results with…

Abstract

Purpose

The purpose of this paper is to evaluate the performance of social spider algorithm (SSA) to solve constrained structural optimisation problems and to compare its results with others algorithms such as genetic algorithm, particle swarm optimisation, differential evolution and artificial bee colony.

Design/methodology/approach

To handle the constraints of the problems, this paper couples to the SSA an efficient selection criteria proposed in the literature that promotes a tournament between two solutions in which the feasible or less infeasible solution wins. The discussion is conducted on the competitiveness of the SSA with other algorithms as well as its performance in constrained problems.

Findings

SSA is a population algorithm proposed for global optimisation inspired by the foraging of social spiders. A spider moves on the web towards the position of the prey, guided by vibrations that occur around it in different frequencies. The SSA was proposed to solve problems without constraints, but these are present in most of practical problems. This paper evaluates the performance of SSA to solve constrained structural optimisation problems and compares its results with other algorithms such as genetic algorithm, particle swarm optimisation, differential evolution and artificial bee colony.

Research limitations/implications

The proposed algorithm has no limitations, and it can be applied in other classes of constrained optimisation problems.

Practical implications

This paper evaluated the proposed algorithm with a benchmark of constrained structural optimisation problems intensely used in the literature, but it can be applied to solve real constrained optimisation problems in engineering and others areas.

Originality/value

This is the first paper to evaluate the performance of SSA in constrained problems and to compare its results with other algorithms traditional in the literature.

Details

Engineering Computations, vol. 34 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 March 2020

Mehmet Konar

The purpose of this paper is to present a novel approach based on the artificial bee colony (ABC) algorithm aiming to achieve maximum acceleration and maximum endurance for…

Abstract

Purpose

The purpose of this paper is to present a novel approach based on the artificial bee colony (ABC) algorithm aiming to achieve maximum acceleration and maximum endurance for morphing unmanned aerial vehicle (UAV) design.

Design/methodology/approach

Some of the most important issues in the design of UAV are the design of thrust system and determination of the endurance of the UAV. Although propeller selection is very important for the thrust system design, battery selection has the utmost importance for the determination of UAV endurance. In this study, the calculations of maximum acceleration and endurance required by ZANKA-II during the flight are considered simultaneously. For this purpose, a model based on the ABC algorithm is proposed for the morphing UAV design, aiming to achieve the maximum acceleration and endurance. In the proposed model, the propeller diameter, propeller pitch and battery values used in morphing UAV's power system design are selected as the input parameters; maximum acceleration and endurance are selected as the output parameters. To obtain the maximum acceleration and endurance, the optimum input parameters are determined through the ABC algorithm-based model.

Findings

Considerable improvements on maximum acceleration and endurance of morphing UAV with ABC algorithm-based model are obtained.

Research limitations/implications

The endurance and acceleration due to the thrust are two separate parameters that are not normally proportional to each other. In this study, optimization of UAV’s endurance and acceleration is considered with equal importance.

Practical implications

Using artificial intelligence techniques causes fast and simple optimization for determination of UAV’s endurance and acceleration with equal importance. In the simulation studies with ABC algorithm, satisfactory results are obtained.

Social implications

The results of the study have showed that the proposed approach could be an alternative method for UAV designers.

Originality/value

Providing a new and efficient method saves time and reduces cost in calculations of maximum acceleration and endurance of the UAV.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

21 – 30 of 506