Search results

1 – 10 of 764
Article
Publication date: 16 July 2021

Khader Zelani Shaik, Siddaiah P. and K. Satya Prasad

Millimeter wave spectrum represents new opportunities to add capacity and faster speeds for next-generation services as fifth generation (5G) applications. In its Spectrum…

Abstract

Purpose

Millimeter wave spectrum represents new opportunities to add capacity and faster speeds for next-generation services as fifth generation (5G) applications. In its Spectrum Frontiers proceeding, the Federal Communications Commision decided to focus on spectrum bands where the most spectrums are potentially available. A low profile antenna array with new decoupling structure is proposed and expected to resonate at higher frequency bands, i.e. millimeter wave frequencies, which are suitable for 5G applications.

Design/methodology/approach

The presented antenna contains artificial magnetic conductor (AMC) surface as decoupling structure. The proposed antenna array with novel AMC surface is operating at 29.1GHz and proven to be decoupling structure and capable of enhancing the isolation by reducing mutual coupling as 8.7dB between the array elements. It is evident that, and overall gain is improved as 10.1% by incorporating 1x2 Array with AMC Method. Mutual coupling between the elements of 1 × 2 antenna array is decreased by 39.12%.

Findings

The proposed structure is designed and simulated using HFSS software and the results are obtained in terms of return loss, gain, voltage standing wave ratio (VSWR) and mutual coupling. The S-Parameters of each stage of design is tabulated and compared with each other to prove the decoupling capability of AMC surface in antenna arrays.

Originality/value

The proposed structure is designed and simulated using HFSS software, and the results are obtained in terms of return loss, gain, VSWR and mutual coupling. The S-Parameters of each stage of design is tabulated and compared with each other to prove the decoupling capability of AMC surface in antenna arrays.

Details

Circuit World, vol. 47 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 16 March 2022

Athanasios Papadimopoulos and Alessio Di Iorio

This study aims to investigate different configurations of plasma antenna arrays and multiple combinations based on whether the plasma dischargers are set ON or OFF, to assess the…

Abstract

Purpose

This study aims to investigate different configurations of plasma antenna arrays and multiple combinations based on whether the plasma dischargers are set ON or OFF, to assess the coupling, interference and overall performance of these plasma antenna arrays.

Design/methodology/approach

In this paper, the authors investigate the operation and performance of the combined use of sets of antennas and plasma antenna elements in plasma monopole antenna arrays.

Findings

The authors find that there can be significant modifications of the plasma antenna arrays’ gain and pattern in multiple ways, merely by switching different combinations of plasma columns ON and OFF.

Originality/value

High-density plasma antenna arrays have been examined in this paper and it has been shown that they are capable of reaching high antenna gain. Moreover, the overall antenna array’s gain and pattern can be considerably transformed in multiple ways by turning ON and OFF different combinations of plasma antenna elements. Finally, the electromagnetic coupling and interference coming from these plasma antennas can be greatly reduced.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 25 October 2019

Melvin C. Jose, Radha Sankararajan, Sreeja B.S. and Pratap Kumar

This paper aims to propose a laser micro-machined 4 × 4 elements microstrip array antenna suitable for 5 G millimeter wave (mm-wave) applications. Each patch element of the array

Abstract

Purpose

This paper aims to propose a laser micro-machined 4 × 4 elements microstrip array antenna suitable for 5 G millimeter wave (mm-wave) applications. Each patch element of the array is excited with same amplitude and phase that is achieved with proper novel impedance matching stub. The proposed antenna achieves a simulated gain of 13.15 dBi and a measured return loss of −24.80 dB at 28.73 GHz with a total bandwidth of 7.48 GHz. The designed antenna is directional with a directivity of 15.1 dBi at 28.73 GHz, whereas fabricated on a low cost FR4 substrate with a substrate thickness of 0.074 λ mm. The antenna is realized with an aperture size of 2.24λ × 3.26λ.

Design/methodology/approach

The antenna structure starts from the design of single element called unit cell. The single element is designed using the transmission line model equations of a rectangular patch. To design a 28 GHz microstrip patch antenna, a dielectric material with lower permittivity and having thickness (h) less than 1 mm is required. This specification gives better gain and efficiency by reducing surface waves and mutual coupling between elements. The inset width is optimized to achieve the minimum reflection coefficient (S11). The single element has been arranged with a minimum spacing of λ/2 (5.3571 mm) in an H plane and E plane. It is connected using the microstrip lines with proper impedance matching. The four 2 × 2-sub array cell subsystems are connected with a corporate feed together formed the 4 × 4-array cell. Rectangular planar array method is used to arrange the elements in the 4 × 4 array cell.

Findings

The design concept is simple which includes the combination of corporate feed and insect feed. It is compact in size and easy to fabricate. The bandwidth of fabricated prototype antenna array is achieved as 7.48 GHz from 24.98 GHz to 32.46 GHz. The mutual coupling is very less though the antenna array is placed with minimum spacing between adjacent elements. This is because of the microstrip feeding structure with minimum phase shift. The gain can be further enhanced with increasing number of array element and proper designing of feed line. Owing to the advantages of low profile, wide bandwidth and high gain, the designed array will be potentially useful in 5 G wireless communications.

Originality/value

The measured antenna offers bandwidth 7.48 GHz (24.98 GHz-32.46 GHz) with centered frequency 28.73 GHz. The agreement between simulated and measured results is good. The VSWR is observed 0.32 < 2, offers good impedance matching and low mutual coupling. It gives better E-Field and H-field radiation patterns of the 4 × 4 array antenna structure at 28 GHz. The total gain of 13.14 dBi is achieved at the center frequency. The total efficiency of 63.42 per cent is achieved with FR4 substrate.

Details

Circuit World, vol. 46 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 21 December 2021

Yousra Ghazaoui, Mohammed EL Ghzaoui, Sudipta Das, BTP Madhav and Ali el Alami

This paper aims to present the design, fabrication and analysis of a wideband, enhanced gain 1 × 2 patch antenna array with a simple profile structure to meet the desired antenna

Abstract

Purpose

This paper aims to present the design, fabrication and analysis of a wideband, enhanced gain 1 × 2 patch antenna array with a simple profile structure to meet the desired antenna traits, such as wide bandwidth, high gain and directional patterns expected for the upcoming fifth-generation (5G) wireless applications in the millimeter wave band. To enhance these parameters (bandwidth and gain), a new antenna geometry by using a T-junction power divider is presented.

Design/methodology/approach

The theory behind this paper is connected with advancements in the 5G communications related to antennas. The methodology used in this work is to design a high gain array antenna and to identify the best possible power divider to deliver the power in an optimized way. The design methodology adopts several steps like the selection of proper substrate material as per the design specification, size of the antenna as per the frequency of operation and application-specific environment condition. The simulation has been performed on the designed antenna in the electromagnetic simulation tool (high-frequency structure simulator [HFSS]), and optimization has been done with parametric analysis, and then the final array antenna model is proposed. The proposed array contains 2-patch elements excited by one port adapted to 50 Ω through a T-junction power divider. The 1 × 2 array configuration with the suggested geometry helps to improve the overall gain of the antenna, and the implementation of the T-junction power divider provides enhanced bandwidth. The proposed array designed using a 1.6 mm thick flame retardant substrate occupies a compact area of 14 × 12.14 mm2.

Findings

The prototype of the array antenna is fabricated and measured to validate the design concept. A good agreement has been reached between the measured and simulated antenna parameters. The measured results confirm its wideband and high gain characteristics, covering 24.77–28.80 GHz for S11= –10 dB with a peak gain of about 15.16 dB at 27.65 GHz.

Originality/value

The proposed antenna covers the bandwidth requirements of the 26 GHz n258 band (24.25–27.50 GHz) to be deployed in the UK and Europe. The suggested antenna structure also covers the federal communications commission (FCC)-regulated 28 GHz n261 band (27.5–28.35 GHz) to be deployed in America and Canada. The low profile, compact size, simple structure, wide bandwidth, high gain and desired directional radiation patterns confirm the applicability of the suggested array antenna for the upcoming 5 G wireless systems.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 14 December 2021

D.D. Devisasi Kala and D. Thiripura Sundari

Optimization involves changing the input parameters of a process that is experimented with different conditions to obtain the maximum or minimum result. Increasing interest is…

Abstract

Purpose

Optimization involves changing the input parameters of a process that is experimented with different conditions to obtain the maximum or minimum result. Increasing interest is shown by antenna researchers in finding the optimum solution for designing complex antenna arrays which are possible by optimization techniques.

Design/methodology/approach

Design of antenna array is a significant electro-magnetic problem of optimization in the current era. The philosophy of optimization is to find the best solution among several available alternatives. In an antenna array, energy is wasted due to side lobe levels which can be reduced by various optimization techniques. Currently, developing optimization techniques applicable for various types of antenna arrays is focused on by researchers.

Findings

In the paper, different optimization algorithms for reducing the side lobe level of the antenna array are presented. Specifically, genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO), cuckoo search algorithm (CSA), invasive weed optimization (IWO), whale optimization algorithm (WOA), fruitfly optimization algorithm (FOA), firefly algorithm (FA), cat swarm optimization (CSO), dragonfly algorithm (DA), enhanced firefly algorithm (EFA) and bat flower pollinator (BFP) are the most popular optimization techniques. Various metrics such as gain enhancement, reduction of side lobe, speed of convergence and the directivity of these algorithms are discussed. Faster convergence is provided by the GA which is used for genetic operator randomization. GA provides improved efficiency of computation with the extreme optimal result as well as outperforming other algorithms of optimization in finding the best solution.

Originality/value

The originality of the paper includes a study that reveals the usage of the different antennas and their importance in various applications.

Article
Publication date: 24 December 2021

Reza Kazemi, Mohsen Fallah, Bijan Abbasi and Seyyed Hossein MohseniArmaki

The purpose of this study is to achieve the low-cost, light-weight and compact antenna array with wide bandwidth and low side lobe levels for synthetic aperture radar (SAR…

Abstract

Purpose

The purpose of this study is to achieve the low-cost, light-weight and compact antenna array with wide bandwidth and low side lobe levels for synthetic aperture radar (SAR) applications in Ku frequency band.

Design/methodology/approach

A compact design of a rectangular microstrip patch antenna array using multilayered dielectric structure is presented in Ku-band for advanced broadband SAR systems. In this design, stepped pins are used to connect the microstrip feed lines to the radiating patches.

Findings

The simulation and fabrication results of the multilayered antenna and a 1×16-element linear array of the antenna with Taylor amplitude distribution in the feeding network are presented. The antenna element has a 10-dB impedance bandwidth of more than 26%, and the linear array shows reduction in bandwidth percentage (about 15.4%). Thanks to Taylor amplitude tapering, the side lobe level (SLL) of the array is lower than −24 dB. The maximum measured gains of the antenna element and the linear array are 7 and 19.2 dBi at the center frequency, respectively.

Originality/value

In the communication systems, a high gain narrow beamwidth radiation pattern achieved by an array of multiple antenna elements with optimized spacing is a solution to overcome the path loss, atmospheric loss, polarization loss, etc. Also, wideband characteristics and compact size are desirable in satellite and SAR systems. This paper provides the combination of these features by microstrip structures.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 24 January 2022

Christos P. Exadaktylos, Dimitrios I. Karatzidis, Theodoros T. Zygiridis and Nikolaos V. Kantartzis

A class of robust and efficient beamforming methods is developed in this paper for the optimised design of realistic microstrip antennas on arbitrarily curved substrates. More…

Abstract

Purpose

A class of robust and efficient beamforming methods is developed in this paper for the optimised design of realistic microstrip antennas on arbitrarily curved substrates. More specifically, this paper aims to focus on the formulation of an effective and computationally light beamforming algorithm and its implementation on a novel realistic cylindrical-substrate microstrip array antenna with significantly decreased size, wideband operation and enhanced radiation characteristics.

Design/methodology/approach

The proposed multi-parametric schemes introduce an efficient null-steering concept, which drastically annihilates the undesired beamformer waveform artefacts, while retaining the real output signal undistorted. In particular, the key objective is the accurate calculation of the appropriate complex feeding weights, required to set nulls along the propagation directions of the unwanted signals and a maximum towards the propagation direction of the desired incoming signal. The featured technique, combined with a modified finite element method, is applied to the design of a new family of cylindrical-substrate microstrip array antennas.

Findings

Numerical results, mainly concerning customisable three-dimensional radiation patterns and attributes, certify the merits of the algorithm and its limited system demands. The introduced beamforming algorithms are applied to a variety of different inputs (desired radiation patterns), which indicate that the designed cylindrical-substrate antenna overwhelms existing designs in terms of computational cost for the beamforming algorithm, while retaining acceptable values for radiation characteristics, such as gain, directivity and side-lobe suppression. In this manner, the effectiveness of the prior methodology and the benefits of this newly shaped array antenna are comprehensively revealed and substantiated.

Originality/value

Rigorous beamforming techniques in conjunction with a class of contemporary array antennas are developed for potential use in high-end communication systems, such as 5G configurations. The proposed cylindrical-shaped structures are systematically designed, with an emphasis on space efficiency and wideband radiation effectiveness to offer fully adjustable setups. To this aim, the cylindrical-substrate microstrip antenna, because of its inherent azimuthal symmetry and confined overall dimensions, provides reliable operation and promising performance.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 October 2014

Yuanhao Wang, Michael Berens, Alexander Nietsch, Werner John and Wolfgang Mathis

– The purpose of this paper is to present an optimization process for the design of a 2×2 patch antenna phased array with application for an UHF RFID system.

Abstract

Purpose

The purpose of this paper is to present an optimization process for the design of a 2×2 patch antenna phased array with application for an UHF RFID system.

Design/methodology/approach

The optimization process is based on a method of moment (MoM)-solver, which was individually made to create such patch antenna phased arrays and simulate the radiated field pattern. In combination with this MoM-solver, a GUI, which gives the opportunity to change every physical antenna factor and create the antenna structure within a few minutes is presented. Furthermore the golden section search method is used to produce an even better solution in a more efficient way compared to the first attempt. After the simulation, different types of presentation of results can be chosen for a fast and easy optimization.

Findings

The design process is discussed while the authors try to optimize the distance between the elements and the difference of input phase for each patch element. The final goal is to create an antenna with maximum directivity and coverage of field pattern.

Practical implications

A physical implementation of an optimized patch antenna phased array and the results of measurement are presented in the end.

Originality/value

An optimization process for the design of a 2×2 patch antenna phased array with application for an UHF RFID system is presented. Furthermore the golden section search method is combined with the design process to increase the accuracy of the solution and decrease the time effort.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 25 February 2022

Gayatri Allu, M. Surendra Kumar and A.M. Prasad

The purpose of this paper is to propose radiating system by avoiding electromagnetic interference in unwanted directions and to radiate the energy in the required direction with…

Abstract

Purpose

The purpose of this paper is to propose radiating system by avoiding electromagnetic interference in unwanted directions and to radiate the energy in the required direction with an optimization technique.

Design/methodology/approach

Practically, multiple, incompatible variables require concurrent boost on a synthesis of systematic antenna assemblage. The authors have worked out the main statistic penalty function to ensure all the restrictions. Here, MBPSO (Modified Binary Particle Swarm Optimization) is developed and introduced thin planar synthesis restriction. The sigmoid function is used to update the particle position. Different analytical demonstrations have been carried out, and the exhibited methods are predominant than the algorithms.

Findings

A 20 × 10 planar antenna array is synthesized using modified BPSO. The authors have suppressed the PSLL in two principal planes and as well as in the entire f plane. Numerical results state that MBPSO outperforms the other binary BPSO, BCSO, ACO, RGA, GA optimization techniques. MBPSO achieved a −51.84 dB PSLL level, whereas BPSO achieved −48.57 dB with the same 50% thinning.

Originality/value

Planar array antenna formation is one of the most complex syntheses because the array gets filled with more antenna elements. The machine-like complication and implementation of such an antenna arrangement with a broad opening would be expensive. It is not easy to control the required radiation patterns shape by using a uniform feeding network. To get better flexibility for sustaining the sidelobe levelheaded along with consistent amplitude distribution. So as far as prominence has been given to the evolutionary algorithm, find an ideal solution for objective array combinational problems.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Open Access
Article
Publication date: 3 May 2021

Habeeba Khan, Sayyed Arif Ali, Mohd Wajid and Muhammad Shah Alam

In this work, a microstrip antenna array for wireless power transfer (WPT) application is reported. The proposed 4 × 4 antenna array operating at 16 GHz is designed using a…

2569

Abstract

Purpose

In this work, a microstrip antenna array for wireless power transfer (WPT) application is reported. The proposed 4 × 4 antenna array operating at 16 GHz is designed using a flexible Kapton polyimide substrate for a far-field charging unit (FFCU).

Design/methodology/approach

The proposed antenna is designed using the transmission line model on a flexible Kapton polyimide substrate. The finite element method (FEM) is used to perform the full-wave electromagnetic analysis of the proposed design.

Findings

The antenna offers −10 dB bandwidth of 240 MHz with beam width and broadside gain found to be 29.4° and 16.38 dB, respectively. Also, a very low cross-polarization level of −34.23 dB is achieved with a radiation efficiency of 36.67%. The array is capable of scanning −15° to +15° in both the elevation and azimuth planes.

Originality/value

The radiation characteristics achieved suggest that the flexible substrate antenna is suitable for wireless charging purposes.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

1 – 10 of 764