Search results

1 – 10 of 10
Content available
Article
Publication date: 1 September 2022

Kang Min, Fenglei Ni, Guojun Zhang, Xin Shu and Hong Liu

The purpose of this paper is to propose a smooth double-spline interpolation method for six-degree-of-freedom rotational robot manipulators, achieving the global C2 continuity of…

Abstract

Purpose

The purpose of this paper is to propose a smooth double-spline interpolation method for six-degree-of-freedom rotational robot manipulators, achieving the global C2 continuity of the robot trajectory.

Design/methodology/approach

This paper presents a smooth double-spline interpolation method, achieving the global C2 continuity of the robot trajectory. The tool center positions and quaternion orientations are first fitted by a cubic B-spline curve and a quartic-polynomial-based quaternion spline curve, respectively. Then, a parameter synchronization model is proposed to realize the synchronous and smooth movement of the robot along the double spline curves. Finally, an extra u-s function is used to record the relationship between the B-spline parameter and its arc length parameter, which may reduce the feed rate fluctuation in interpolation. The seven segments jerk-limited feed rate profile is used to generate motion commands for algorithm validation.

Findings

The simulation and experimental results demonstrate that the proposed method is effective and can generate the global C2-continuity robot trajectory.

Originality/value

The main contributions of this paper are as follows: guarantee the C2 continuity of the position path and quaternion orientation path simultaneously; provide a parameter synchronization model to realize the synchronous and smooth movement of the robot along the double spline curves; and add an extra u-s function to realize arc length parameterization of the B-spline path, which may reduce the feed rate fluctuation in interpolation.

Details

Assembly Automation, vol. 42 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 17 October 2022

Jesús Miguel Chacón, Javier Sánchez-Reyes, Javier Vallejo and Pedro José Núñez

Non-uniform rational B-splines (NURBSs) are the de facto standard for representing objects in computer-aided design (CAD). The purpose of this paper is to discuss how to stick to…

1276

Abstract

Purpose

Non-uniform rational B-splines (NURBSs) are the de facto standard for representing objects in computer-aided design (CAD). The purpose of this paper is to discuss how to stick to this standard in all phases of the additive manufacturing (AM) workflow, from the CAD object to the final G-code, bypassing unnecessary polygonal approximations.

Design/methodology/approach

The authors use a commercial CAD system (Rhino3D along with its programming environment Grasshopper) for direct slicing of the model, offset generation and trimming. Circular arcs are represented as quadratic NURBSs and free-form geometry as quadratic or cubic polynomial B-splines. Therefore, circular arcs are directly expressible as G2/G3 G-code commands, whereas free-form paths are rewritten as a succession of cubic Bézier curves, thereby admitting exact translation into G5 commands, available in firmware for AM controllers, such as Marlin.

Findings

Experimental results of this paper confirm a considerable improvement in quality over the standard AM workflow, consisting of an initial polygonization of the object (e.g. via standard tessellation language), slicing this polygonal approximation, offsetting the polygonal sections and, finally, generating G-code made up of polyline trajectories (G1 commands).

Originality/value

A streamlined AM workflow is obtained, with a seamless transfer from the initial CAD description to the final G-code. By adhering to the NURBS standard at all steps, the authors avoid multiple representations and associated errors resulting from approximations.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 1 April 2002

173

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 49 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Open Access
Article
Publication date: 2 February 2023

Cheng Wang, Haibo Xie and Huayong Yang

This paper aims to present an iterative path-following method with joint limits to solve the problem of large computation cost, movement exceeding joint limits and poor…

Abstract

Purpose

This paper aims to present an iterative path-following method with joint limits to solve the problem of large computation cost, movement exceeding joint limits and poor path-following accuracy for the path planning of hyper-redundant snake-like manipulator.

Design/methodology/approach

When a desired path is given, new configuration of the snake-like manipulator is obtained through a geometrical approach, then the joints are repositioned through iterations until all the rotation angles satisfy the imposed joint limits. Finally, a new arrangement is obtained through the analytic solution of the inverse kinematics of hyper-redundant manipulator. Finally, simulations and experiments are carried out to analyze the performance of the proposed path-following method.

Findings

Simulation results show that the average computation time is 0.1 ms per step for a hyper-redundant manipulator with 12 degrees of freedom, and the deviation in tip position can be kept below 0.02 mm. Experiments show that all the rotation angles are within joint limits.

Research limitations/implications

Currently , the manipulator is working in open-loop, the elasticity of the driving cable will cause positioning error. In future, close-loop control based on real-time attitude detection will be used in in combination with the path-following method to achieve high-precision trajectory tracking.

Originality/value

Through a series of iterative processes, the proposed method can make the manipulator approach the desired path as much as possible within the joint constraints with high precision and less computation time.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Article
Publication date: 1 April 2005

76

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 52 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Content available
Article
Publication date: 22 June 2012

204

Abstract

Details

Soldering & Surface Mount Technology, vol. 24 no. 3
Type: Research Article
ISSN: 0954-0911

Content available
Article
Publication date: 17 August 2012

John Ling

195

Abstract

Details

Circuit World, vol. 38 no. 3
Type: Research Article
ISSN: 0305-6120

Content available
Article
Publication date: 27 July 2012

John Ling

251

Abstract

Details

Microelectronics International, vol. 29 no. 3
Type: Research Article
ISSN: 1356-5362

Open Access
Article
Publication date: 17 May 2022

Hao Li, Jialin Sun and Guotang Zhao

With the help of multi-body dynamics software UM, the paper uses Kik–Piotrowski model to simulate wheel-rail contact and Archard wear model for rail wear.

Abstract

Purpose

With the help of multi-body dynamics software UM, the paper uses Kik–Piotrowski model to simulate wheel-rail contact and Archard wear model for rail wear.

Design/methodology/approach

The CRH5 vehicle-track coupling dynamics model is constructed for the wear study of rails of small radius curves, namely 200 and 350 m in Guangzhou East EMU Depot and those 250 and 300 m radius in Taiyuan South EMU Depot.

Findings

Results show that the rail wear at the straight-circle point, the curve center point and the circle-straight point follows the order of center point > the circle-straight point > the straight-circle point. The wear on rail of small radius curves intensifies with the rise of running speed, and the wearing trend tends to fasten as the curve radius declines. The maximum rail wear of the inner rail can reach 2.29 mm, while that of the outer rail, 10.11 mm.

Originality/value

With the increase of the train passing number, the wear range tends to expand. The rail wear decreases with the increase of the curve radius. The dynamic response of vehicle increases with the increase of rail wear, among which the derailment coefficient is affected the most. When the number of passing vehicles reaches 1 million, the derailment coefficient exceeds the limit value, which poses a risk of derailment.

Details

Railway Sciences, vol. 1 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 15 November 2022

Liyao Song, Bai Chen, Bo Li, Rupeng Zhu and Dan Wang

The supercritical design of tail rotor drive shaft has attracted more attention in helicopter design due to its high power–weight ratio and low maintenance cost. However, there…

Abstract

Purpose

The supercritical design of tail rotor drive shaft has attracted more attention in helicopter design due to its high power–weight ratio and low maintenance cost. However, there exists excessive vibration when the shaft passes through the critical frequency. Dry friction damper is the equipment applied to the drive shaft to suppress the excessive vibration. In order to figure out the damping mechanism of the dry friction damper and improve the damping efficiency, the dynamic model of the shaft/damper system is established based on the Jeffcott rotor model.

Design/methodology/approach

The typical frequency response of the system is studied through bifurcation diagrams, amplitude-frequency characteristic curves and waterfall frequency response spectrum. The typical transient responses under frequency sweeps are also obtained.

Findings

The results show that the response of the system changes from periodic no-rub motion to quasi-periodic rub-impact motion, and then to synchronous full annular rub-impact, and finally, back to periodic no-rub motion. The slip of the rub-impact ring improves the stability of the system. Besides, the effects of the system parameters including critical dry friction force, rub-impact friction coefficient, initial clearance on the stability and the vibration damping capacity are studied. It is observed that the stability changes significantly varying the three parameters respectively. The vibration damping capacity is mainly affected by the critical dry friction force and the initial clearance.

Originality/value

Presented results provide guidance for the design of the dry friction damper.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Access

Only content I have access to

Year

Content type

1 – 10 of 10