Search results

1 – 10 of 364
Article
Publication date: 10 November 2020

Xiangman Zhou, Qihua Tian, Yixian Du, Yancheng Zhang, Xingwang Bai, Yicha Zhang, Haiou Zhang, Congyang Zhang and Youlu Yuan

The purpose of this paper is to find a theoretical reference to adjust the unsymmetrical arc shape and plasma flow of overlapping deposition in wire arc additive manufacturing…

Abstract

Purpose

The purpose of this paper is to find a theoretical reference to adjust the unsymmetrical arc shape and plasma flow of overlapping deposition in wire arc additive manufacturing (WAAM) and ensure the effect of the gas shielding and stable heat and mass transfer in deposition process. The multiphysical numerical simulation and physical experiment are used for validation.

Design/methodology/approach

In this study, welding torch tilt deposition and external parallel magnetic field–assisted deposition are presented to adjust the unsymmetrical arc shape and plasma flow of overlapping deposition, and a three-dimensional numerical model is developed to simulate the arc of torch tilt overlapping deposition and external parallel magnetic field–assisted overlapping deposition.

Findings

The comparison of simulated results indicate that the angle of welding torch tilt equal to 20° and the magnetic flux density of external transverse magnetic field equal to 0.001 Tesla are capable of balancing the electric arc and shielding gas effectively, respectively. The arc profiles captured by a high-speed camera match well with simulated results.

Originality/value

These studies of this paper can provide a theoretical basis and reference for the calibration and optimization of WAAM process parameters.

Details

Rapid Prototyping Journal, vol. 27 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 August 2017

Somashekara M. Adinarayanappa and Suryakumar Simhambhatla

Twin-wire welding-based additive manufacturing (TWAM) is a unique process which uses gas metal arc welding (GMAW)-based twin-wire weld-deposition to create functionally gradient…

Abstract

Purpose

Twin-wire welding-based additive manufacturing (TWAM) is a unique process which uses gas metal arc welding (GMAW)-based twin-wire weld-deposition to create functionally gradient materials (FGMs). Presented study aims to focus on creating metallic objects with a hardness gradient using GMAW of twin-wire weld deposition setup.

Design/methodology/approach

By using dissimilar filler wires in twin-wire weld-deposition, it is possible to create metallic objects with varying hardness. This is made possible by individually controlling the proportion of each filler wire used. ER70S-6 and ER110S-G are the two filler wires used for the study; the former has lower hardness than the latter. In the current study, methodology and various experiments carried out to identify the suitable process parameters at a given location for a desired variation of hardness have been presented. A predictive model for obtaining the wire speed of the filler wires required for a desired value of hardness was also created. Subsequently, sample parts with gradient in various directions have been fabricated.

Findings

For dissimilar twin-wire weld-deposition used here, it is observed that the resultant hardness is in the volumetric proportion of the hardness of the individual filler wires. This aids the fabrication of FGMs using arc based weld-deposition with localized control of hardness, achieved through the control of the ratio of wire speeds of the individual filler wires. Four sample parts were fabricated to demonstrate the concept of realizing FGMs through TWAM. The fabricated parts showed good match with the desired hardness variation.

Research limitations/implications

This paper successfully presents the capability of TWAM for creating gradient metallic objects with varying hardness. Although developed using ER70S-6 and ER110S-G filler wire combination, the methodology can be extended for other filler wire combinations too for creating FGMs

Originality/value

GMAW-based twin-wire welding for additive manufacturing is a novel process which uses dissimilar filler wires for creating FGMs. This paper describes methodology of the same followed by illustration of parts created with bi-directional hardness gradient.

Details

Rapid Prototyping Journal, vol. 23 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 August 2022

Jayaprakash Sharma Panchagnula and Suryakumar Simhambhatla

Amongst various additive manufacturing (AM) techniques for realizing the complex metallic objects, weld-deposition (arc)-based directed energy AM technique is attaining more focus…

Abstract

Purpose

Amongst various additive manufacturing (AM) techniques for realizing the complex metallic objects, weld-deposition (arc)-based directed energy AM technique is attaining more focus over commercially available powder bed fusion techniques. This is because of the capability of high deposition rates, high power and material utilization, simpler setup and less initial investment of arc-based AM. Nevertheless, realization of sudden overhanging features through arc-based weld-deposition techniques is still a challenging task because of the necessity of support structures. This paper aims to describe a novel methodology for producing complex metallic objects with sudden overhangs without using supports.

Design/methodology/approach

The realization of complex metallic objects with sudden overhangs (without using supports) is possible by reorienting the workpiece and/or deposition head at every instance using higher order kinematics (5-axis setup) to make sure the overhanging feature is in line to the deposition direction.

Findings

In the absence of universally applicable support mechanism, deposition of overhanging features remains one of the main challenges in AM. A separate support structure is often necessary for depositing the overhanging features. Small overhang features are usually possible by a little overextension from the previous layer. Nevertheless, deposition of large gradually varying overhangs and sudden overhangs with complex features without support structures is a challenging task in any AM process. This demands higher order kinematics which calls for inclined and/or orthogonal slicing and area filling.

Originality/value

The unique aspect of this paper is the identification of sudden overhang feature from a tessellated computer-aided design (.stl) file and generates an orthogonal tool path for deposition for sudden overhangs. An in-house MATLAB routine has been developed and presented for performing the same. This methodology helps in realization of sudden overhangs without use of supports. To validate proposed technique, various illustrative case studies have been taken up for deposition.

Article
Publication date: 31 December 2020

Bing Liu, Hongyao Shen, Rongxin Deng, Zeyu Zhou, Jia’ao Jin and Jianzhong Fu

Additive manufacturing based on arc welding is a fast and effective way to fabricate complex and irregular metal workpieces. Thin-wall metal structures are widely used in the…

Abstract

Purpose

Additive manufacturing based on arc welding is a fast and effective way to fabricate complex and irregular metal workpieces. Thin-wall metal structures are widely used in the industry. However, it is difficult to realize support-free freeform thin-wall structures. This paper aims to propose a new method of non-supporting thin-wall structure (NSTWS) manufacturing by gas metal arc welding (GMAW) with the help of a multi-degree of freedom robot arm.

Design/methodology/approach

This study uses the geodesic distance on the triangular mesh to build a scalar field, and then the equidistant iso-polylines are obtained, which are used as welding paths for thin-wall structures. Focusing on the possible problems of interference and the violent variation of the printing directions, this paper proposes two types of methods to partition the model mesh and generate new printable iso-polylines on the split meshes.

Findings

It is found that irregular thin-wall models such as an elbow, a vase or a transition structure can be deposited without any support and with a good surface quality after applying the methods.

Originality/value

The experiments producing irregular models illustrate the feasibility and effectiveness of the methods to fabricate NSTWSs, which could provide guidance to some industrial applications.

Details

Rapid Prototyping Journal, vol. 27 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 June 2012

K.P. Karunakaran, Alain Bernard, S. Suryakumar, Lucas Dembinski and Georges Taillandier

The purpose of this paper is to review additive and/or subtractive manufacturing methods for metallic objects and their gradual evolution from prototyping tools to rapid…

3754

Abstract

Purpose

The purpose of this paper is to review additive and/or subtractive manufacturing methods for metallic objects and their gradual evolution from prototyping tools to rapid manufacture of actual parts.

Design/methodology/approach

Various existing rapid manufacturing (RM) methods have been classified into six groups, namely, CNC machining laminated manufacturing, powder‐bed technologies, deposition technologies, hybrid technologies and rapid casting technologies and discussed in detail. The RM methods have been further classified, based on criteria such as material, raw material form, energy source, etc. The process capabilities springing from these classifications are captured in the form of a table, which acts as a database.

Findings

Due to the approximation in RM in exchange for total automation, a variety of multi‐faceted and hybrid approaches has to be adopted. This study helps in choosing the appropriate RM process among these myriad technologies.

Originality/value

This review facilitates identification of appropriate RM process for a given situation and sets the framework for design for RM.

Article
Publication date: 1 February 1991

Richard Smith

In common with many engaged in engineering manufacture, the welding fabricator is under continuing pressure to increase productivity in order to remain competitive in home and…

Abstract

In common with many engaged in engineering manufacture, the welding fabricator is under continuing pressure to increase productivity in order to remain competitive in home and international markets.

Details

Assembly Automation, vol. 11 no. 2
Type: Research Article
ISSN: 0144-5154

Article
Publication date: 14 December 2022

Runyao Yu, Xingwang Bai, Xueqi Yu and Haiou Zhang

A new wire arc additive manufacturing (WAAM) process combined with gravity-driven powder feeding was developed to fabricate components of tungsten carbide (WC)-reinforced iron…

235

Abstract

Purpose

A new wire arc additive manufacturing (WAAM) process combined with gravity-driven powder feeding was developed to fabricate components of tungsten carbide (WC)-reinforced iron matrix composites. The purpose of this study was to investigate the particle transportation mechanism during deposition and determine the effects of WC particle size on the microstructure and properties of the so-fabricated component.

Design/methodology/approach

Thin-walled samples were deposited by the new WAAM using two WC particles of different sizes. A series of in-depth investigations were conducted to reveal the differences in the macro morphology, microstructure, tensile performance and wear properties.

Findings

The results showed that inward convection and gravity were the main factors affecting WC transportation in the molten pool. Large WC particles have higher ability than small particles to penetrate into the molten pool and survive severe dissolution. Small WC particles were more likely to be completely dissolved around the top surface, forming a thicker region of reticulate (Fe, W)6C. Large WC particles can slow down the inward convection more, thereby leading to an increase in width and a decrease in the layer height of the weld bead. The mechanical properties and wear resistance significantly increased owing to reinforcement. Comparatively, samples with large WC particles showed inferior tensile properties owing to their higher susceptibility to cracks.

Originality/value

Fabricating metal matrix composites through the WAAM process is a novel concept that still requires further investigation. Apart from the self-designed gravity-driven powder feeding, the unique aspects of this study also include the revelation of the particle transportation mechanism of WC particles during deposition.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 April 2015

Suryakumar Simhambhatla and K.P. Karunakaran

– This paper aims to develop build strategies for rapid manufacturing of components of varying complexity with the help of illustration.

1059

Abstract

Purpose

This paper aims to develop build strategies for rapid manufacturing of components of varying complexity with the help of illustration.

Design/methodology/approach

The build strategies are developed using a hybrid layered manufacturing (HLM) setup. HLM, an automatic layered manufacturing process for metallic objects, combines the best features of two well-known and economical processes, viz., arc weld-deposition and milling. Depending on the geometric complexity of the object, the deposition and/or finish machining may involve fixed (3-axis) or variable axis (5-axis) kinematics.

Findings

Fixed axis (3-axis) kinematics is sufficient to produce components free of undercuts and overhanging features. Manufacture of components with undercuts can be categorized into three methods, viz., those that exploit the inherent overhanging ability, those that involve blinding of the undercuts in the material deposition stage and those that involve variable axis kinematics for aligning the overhang with the deposition direction.

Research limitations/implications

Although developed using the HLM setup, these generic concepts can be used in a variety of metal deposition processes.

Originality/value

This paper describes the methodology for realizing undercut features of varying complexity and also chalks out the procedure for their manufacture with the help of case studies for each approach.

Details

Rapid Prototyping Journal, vol. 21 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 December 2021

J. Norberto Pires, Amin S. Azar, Filipe Nogueira, Carlos Ye Zhu, Ricardo Branco and Trayana Tankova

Additive manufacturing (AM) is a rapidly evolving manufacturing process, which refers to a set of technologies that add materials layer-by-layer to create functional components…

Abstract

Purpose

Additive manufacturing (AM) is a rapidly evolving manufacturing process, which refers to a set of technologies that add materials layer-by-layer to create functional components. AM technologies have received an enormous attention from both academia and industry, and they are being successfully used in various applications, such as rapid prototyping, tooling, direct manufacturing and repair, among others. AM does not necessarily imply building parts, as it also refers to innovation in materials, system and part designs, novel combination of properties and interplay between systems and materials. The most exciting features of AM are related to the development of radically new systems and materials that can be used in advanced products with the aim of reducing costs, manufacturing difficulties, weight, waste and energy consumption. It is essential to develop an advanced production system that assists the user through the process, from the computer-aided design model to functional components. The challenges faced in the research and development and operational phase of producing those parts include requiring the capacity to simulate and observe the building process and, more importantly, being able to introduce the production changes in a real-time fashion. This paper aims to review the role of robotics in various AM technologies to underline its importance, followed by an introduction of a novel and intelligent system for directed energy deposition (DED) technology.

Design/methodology/approach

AM presents intrinsic advantages when compared to the conventional processes. Nevertheless, its industrial integration remains as a challenge due to equipment and process complexities. DED technologies are among the most sophisticated concepts that have the potential of transforming the current material processing practices.

Findings

The objective of this paper is identifying the fundamental features of an intelligent DED platform, capable of handling the science and operational aspects of the advanced AM applications. Consequently, we introduce and discuss a novel robotic AM system, designed for processing metals and alloys such as aluminium alloys, high-strength steels, stainless steels, titanium alloys, magnesium alloys, nickel-based superalloys and other metallic alloys for various applications. A few demonstrators are presented and briefly discussed, to present the usefulness of the introduced system and underlying concept. The main design objective of the presented intelligent robotic AM system is to implement a design-and-produce strategy. This means that the system should allow the user to focus on the knowledge-based tasks, e.g. the tasks of designing the part, material selection, simulating the deposition process and anticipating the metallurgical properties of the final part, as the rest would be handled automatically.

Research limitations/implications

This paper reviews a few AM technologies, where robotics is a central part of the process, such as vat photopolymerization, material jetting, binder jetting, material extrusion, powder bed fusion, DED and sheet lamination. This paper aims to influence the development of robot-based AM systems for industrial applications such as part production, automotive, medical, aerospace and defence sectors.

Originality/value

The presented intelligent system is an original development that is designed and built by the co-authors J. Norberto Pires, Amin S. Azar and Trayana Tankova.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 September 2018

Osama Abdulhameed, Abdurahman Mushabab Al-Ahmari, Wadea Ameen and Syed Hammad Mian

Hybrid manufacturing technologies combining individual processes can be recognized as one of the most cogent developments in recent times. As a result of integrating additive…

Abstract

Purpose

Hybrid manufacturing technologies combining individual processes can be recognized as one of the most cogent developments in recent times. As a result of integrating additive, subtractive and inspection processes within a single system, the relative benefits of each process can be exploited. This collaboration uses the strength of the individual processes, while decreasing the shortcomings and broadening the application areas. Notwithstanding its numerous advantages, the implementation of hybrid technology is typically affected by the limited process planning methods. The process planning methods proficient at effectively using manufacturing sources for hybridization are notably restrictive. Hence, this paper aims to propose a computer-aided process planning system for hybrid additive, subtractive and inspection processes. A dynamic process plan has been developed, wherein an online process control with intelligent and autonomous characteristics, as well as the feedback from the inspection, is utilized.

Design/methodology/approach

In this research, a computer-aided process planning system for hybrid additive, subtractive and inspection process has been proposed. A framework based on the integration of three phases has been designed and implemented. The first phase has been developed for the generation of alternative plans or different scenarios depending on machining parameters, the amount of material to be added and removed in additive and subtractive manufacturing, etc. The primary objective in this phase has been to conduct set-up planning, process selection, process sequencing, selection of machine parameters, etc. The second phase is aimed at the identification of the optimum scenario or plan.

Findings

To accomplish this goal, economic models for additive and subtractive manufacturing were used. The objective of the third phase was to generate a dynamic process plan depending on the inspection feedback. For this purpose, a multi-agent system has been used. The multi-agent system has been used to achieve intelligence and autonomy of different phases.

Practical implications

A case study has been developed to test and validate the proposed algorithm and establish the performance of the proposed system.

Originality/value

The major contribution of this work is the novel dynamic computer-aided process planning system for the hybrid process. This hybrid process is not limited by the shortcomings of the constituent processes in terms of tool accessibility and support volume. It has been established that the hybrid process together with an appropriate computer-aided process plan provides an effective solution to accurately fabricate a variety of complex parts.

Details

Rapid Prototyping Journal, vol. 24 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 364