Search results

1 – 10 of 560
Article
Publication date: 24 January 2024

Seyed Mehdi Sharifi, Mohammad Reza Jalilvand and Shabnam Emami kervee

The effectiveness of a message and its attributes have become important for digital media. This study aims to investigate how different elements of a website including both…

Abstract

Purpose

The effectiveness of a message and its attributes have become important for digital media. This study aims to investigate how different elements of a website including both argument-oriented and emotional stimuli based on the elaboration likelihood model (ELM) can affect the issue involvement and change the attitude of the website visitors of a healthcare service provider.

Design/methodology/approach

The Ministry of Health and Education (MOHME) website was selected to explore how its content and design can persuade visitors. An online survey was conducted on 355 adults engaging in health protection behaviors during the COVID-19 pandemic.

Findings

Structural equation modeling (SEM) analysis showed that one design element, i.e. website navigation and one social cue, i.e. social connectedness, have positive impact on issue involvement, while social presence and website satisfaction have a negative effect on issue involvement because of the random fluctuation suppressor effect. In addition, prior knowledge significantly influenced the issue's involvement. Further, website satisfaction has impacted attitudes directly. There was no significant relationship between argument quality and issue involvement.

Originality/value

Previous works have studied health-related behaviors in offline contexts; however, the scholars have not focused on the individuals' persuasion using ELM regarding the healthcare services provided in online communities. The results of the current study have theoretical and practical implications for scholars, website designers and policymakers.

Details

Journal of Integrated Care, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1476-9018

Keywords

Open Access
Article
Publication date: 22 April 2024

Sami Barmada, Nunzia Fontana, Leonardo Sandrolini and Mattia Simonazzi

The purpose of this paper is to gain a better understanding on how metasurfaces behave, in terms of currents in each unit cell. A better knowledge of their behavior could lead to…

42

Abstract

Purpose

The purpose of this paper is to gain a better understanding on how metasurfaces behave, in terms of currents in each unit cell. A better knowledge of their behavior could lead to an ad-hoc design for specific applications.

Design/methodology/approach

The methodology used is both theoretical and numerical; it is based on circuit theory and on an optimization procedure.

Findings

The results show that when the knowledge of the current in each unit cell of a metasurface is needed, the most common approximations currently used are often not accurate. Furthermore, a procedure for the termination of a metasurface, with application-driven goals, is given.

Originality/value

This paper investigates the distribution of the currents in a 2D metamaterial realized with magnetically coupled resonant coils. Different models for the analysis of these structures are illustrated, and the effects of the approximations they introduce on the current values are shown and discussed. Furthermore, proper terminations of the resonators on the boundaries have been investigated by implementing a numerical optimization procedure with the purpose of achieving a uniform distribution of the resonator currents. The results show that the behavior of a metasurface (in terms of currents in each single resonator) depends on different properties; as a consequence, their design is not a trivial task and is dependent on the specific applications they are designed for. A design strategy, with lumped impedance termination, is here proposed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 5 December 2023

Liqun Hu, Tonghui Wang, David Trafimow, S.T. Boris Choy, Xiangfei Chen, Cong Wang and Tingting Tong

The authors’ conclusions are based on mathematical derivations that are supported by computer simulations and three worked examples in applications of economics and finance…

Abstract

Purpose

The authors’ conclusions are based on mathematical derivations that are supported by computer simulations and three worked examples in applications of economics and finance. Finally, the authors provide a link to a computer program so that researchers can perform the analyses easily.

Design/methodology/approach

Based on a parameter estimation goal, the present work is concerned with determining the minimum sample size researchers should collect so their sample medians can be trusted as good estimates of corresponding population medians. The authors derive two solutions, using a normal approximation and an exact method.

Findings

The exact method provides more accurate answers than the normal approximation method. The authors show that the minimum sample size necessary for estimating the median using the exact method is substantially smaller than that using the normal approximation method. Therefore, researchers can use the exact method to enjoy a sample size savings.

Originality/value

In this paper, the a priori procedure is extended for estimating the population median under the skew normal settings. The mathematical derivation and with computer simulations of the exact method by using sample median to estimate the population median is new and a link to a free and user-friendly computer program is provided so researchers can make their own calculations.

Details

Asian Journal of Economics and Banking, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2615-9821

Keywords

Open Access
Article
Publication date: 27 June 2022

Saida Mancer, Abdelhakim Necir and Souad Benchaira

The purpose of this paper is to propose a semiparametric estimator for the tail index of Pareto-type random truncated data that improves the existing ones in terms of mean square…

Abstract

Purpose

The purpose of this paper is to propose a semiparametric estimator for the tail index of Pareto-type random truncated data that improves the existing ones in terms of mean square error. Moreover, we establish its consistency and asymptotic normality.

Design/methodology/approach

To construct a root mean squared error (RMSE)-reduced estimator of the tail index, the authors used the semiparametric estimator of the underlying distribution function given by Wang (1989). This allows us to define the corresponding tail process and provide a weak approximation to this one. By means of a functional representation of the given estimator of the tail index and by using this weak approximation, the authors establish the asymptotic normality of the aforementioned RMSE-reduced estimator.

Findings

In basis on a semiparametric estimator of the underlying distribution function, the authors proposed a new estimation method to the tail index of Pareto-type distributions for randomly right-truncated data. Compared with the existing ones, this estimator behaves well both in terms of bias and RMSE. A useful weak approximation of the corresponding tail empirical process allowed us to establish both the consistency and asymptotic normality of the proposed estimator.

Originality/value

A new tail semiparametric (empirical) process for truncated data is introduced, a new estimator for the tail index of Pareto-type truncated data is introduced and asymptotic normality of the proposed estimator is established.

Details

Arab Journal of Mathematical Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1319-5166

Keywords

Article
Publication date: 18 April 2024

Stefano Costa, Eugenio Costamagna and Paolo Di Barba

A novel method for modelling permanent magnets is investigated based on numerical approximations with rational functions. This study aims to introduce the AAA algorithm and other…

Abstract

Purpose

A novel method for modelling permanent magnets is investigated based on numerical approximations with rational functions. This study aims to introduce the AAA algorithm and other recently developed, cutting-edge mathematical tools, which provide outstandingly fast and accurate numerical computation of potentials and vector fields.

Design/methodology/approach

First, the AAA algorithm is briefly introduced along with its main variants and other advanced mathematical tools involved in the modelling. Then, the analysis of a circular Halbach array with a one-pole pair is carried out by means of the AAA-least squares method, focusing on vector potential and flux density in the bore and validating results by means of classic finite element software. Finally, the investigation is completed by a finite difference analysis.

Findings

AAA methods for field analysis prove to be strikingly fast and accurate. Results are in excellent agreement with those provided by the finite element model, and the very good agreement with those from finite differences suggests future improvements. They are also easy programming; the MATLAB code is less than 200 lines. This indicates they can provide an effective tool for rapid analysis.

Research limitations/implications

AAA methods in magnetostatics are novel, but their extension to analogous physical problems seems straightforward. Being a meshless method, it is unlikely that local non-linearities can be considered. An aspect of particular interest, left for future research, is the capability of handling inhomogeneous domains, i.e. solving general interface problems.

Originality/value

The authors use cutting-edge mathematical tools for the modelling of complex physical objects in magnetostatics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 22 March 2023

Thong Le Pham, Nghiem Tan Le, Nhi Nhat Phuong Ho and Thanh Cong Le

This study aims to analyse the consumption inequality between farm and non-farm households in rural Vietnam, using the data from the 2016 Vietnam household living standards survey.

642

Abstract

Purpose

This study aims to analyse the consumption inequality between farm and non-farm households in rural Vietnam, using the data from the 2016 Vietnam household living standards survey.

Design/methodology/approach

The present paper applies the “recentered influence functions (RIF)” in “Oaxaca-Blinder (OB)” type decomposition as proposed by Firpo et al. (2018) to allow for the flexible distribution of the outcome variables and the non-randomness of non-farm employment that violates the classical linearity assumption.

Findings

Non-farm households have significantly higher per capita consumption expenditure than farm households for the entire distribution. The gap in expenditure is large at low percentiles and narrowing with higher percentiles. At 10th percentile, the gap is estimated at 27.1%, but it is decreasing to 11.1% at 90th percentile. Most of the gaps are explained by the differences in the observed characteristics between farm and non-farm households such as ethnicity, education, income, internal transmittances and household composition. Non-farm households are endowed with more productive factors that result in higher per capita consumption expenditure.

Originality/value

Gaps in ethnicity and education are found to be key predictors of the inequality in consumption expenditures between farm and non-farm households, then, government policies that are aimed at increasing access to non-farm employment and education for ethnic minorities and for rural poor households are pathways to improve rural household welfare and hence reduce inequality.

Details

Journal of Asian Business and Economic Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2515-964X

Keywords

Article
Publication date: 26 December 2023

Hai Le and Phuong Nguyen

This study examines the importance of exchange rate and credit growth fluctuations when designing monetary policy in Thailand. To this end, the authors construct a small open…

Abstract

Purpose

This study examines the importance of exchange rate and credit growth fluctuations when designing monetary policy in Thailand. To this end, the authors construct a small open economy New Keynesian dynamic stochastic general equilibrium (DSGE) model. The model encompasses several essential characteristics, including incomplete financial markets, incomplete exchange rate pass-through, deviations from the law of one price and a banking sector. The authors consider generalized Taylor rules, in which policymakers adjust policy rates in response to output, inflation, credit growth and exchange rate fluctuations. The marginal likelihoods are then employed to investigate whether the central bank responds to fluctuations in the exchange rate and credit growth.

Design/methodology/approach

This study constructs a small open economy DSGE model and then estimates the model using Bayesian methods.

Findings

The authors demonstrate that the monetary authority does target exchange rates, whereas there is no evidence in favor of incorporating credit growth into the policy rules. These findings survive various robustness checks. Furthermore, the authors demonstrate that domestic shocks contribute significantly to domestic business cycles. Although the terms of trade shock plays a minor role in business cycles, it explains the most significant proportion of exchange rate fluctuations, followed by the country risk premium shock.

Originality/value

This study is the first attempt at exploring the relevance of exchange rate and credit growth fluctuations when designing monetary policy in Thailand.

Details

Journal of Economic Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3585

Keywords

Article
Publication date: 16 February 2024

Neeraj Joshi, Sudeep R. Bapat and Raghu Nandan Sengupta

The purpose of this paper is to develop optimal estimation procedures for the stress-strength reliability (SSR) parameter R = P(X > Y) of an inverse Pareto distribution (IPD).

Abstract

Purpose

The purpose of this paper is to develop optimal estimation procedures for the stress-strength reliability (SSR) parameter R = P(X > Y) of an inverse Pareto distribution (IPD).

Design/methodology/approach

We estimate the SSR parameter R = P(X > Y) of the IPD under the minimum risk and bounded risk point estimation problems, where X and Y are strength and stress variables, respectively. The total loss function considered is a combination of estimation error (squared error) and cost, utilizing which we minimize the associated risk in order to estimate the reliability parameter. As no fixed-sample technique can be used to solve the proposed point estimation problems, we propose some “cost and time efficient” adaptive sampling techniques (two-stage and purely sequential sampling methods) to tackle them.

Findings

We state important results based on the proposed sampling methodologies. These include estimations of the expected sample size, standard deviation (SD) and mean square error (MSE) of the terminal estimator of reliability parameters. The theoretical values of reliability parameters and the associated sample size and risk functions are well supported by exhaustive simulation analyses. The applicability of our suggested methodology is further corroborated by a real dataset based on insurance claims.

Originality/value

This study will be useful for scenarios where various logistical concerns are involved in the reliability analysis. The methodologies proposed in this study can reduce the number of sampling operations substantially and save time and cost to a great extent.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 April 2024

Ali Hashemi, Parsa Yazdanpanah Qaraei and Mostafa Shabanian-Poodeh

The aim of this paper is to provide a simple yet accurate and efficient geometric method for thermal homogenization of impregnated and non-impregnated coil winding technologies…

Abstract

Purpose

The aim of this paper is to provide a simple yet accurate and efficient geometric method for thermal homogenization of impregnated and non-impregnated coil winding technologies based on the concept of thermal resistance.

Design/methodology/approach

For regular windings, the periodic microscopic cell in the winding space is identified. Also, for irregular windings, the average microscopic cell of the winding is determined. An approximation is used to calculate the thermal resistance of the winding cell. Based on this approximation, the winding insulation is considered as a circular ring around the wire. Mathematical equations are obtained to calculate the equivalent thermal resistance of the cell. The equivalent thermal conductivity of the winding is calculated using equivalent thermal resistance of the cell. Winding thermal homogenization is completed by determining the equivalent thermal properties of the cell.

Findings

The thermal pattern of different windings is simulated and compared with the results of different homogenization methods. The results show that the proposed method is applicable for a wide range of windings in terms of winding scheme, packing factor and winding insulation. Also, the results show that the proposed method is more accurate than other winding homogenization methods in calculating the equivalent thermal conductivity of the winding.

Research limitations/implications

In this paper, the change of electrical resistance of the winding with temperature and thermal contact between the sub-components are ignored. Also, liquid insulators, such as oils, and rectangular wires were not investigated. Research in these topics is considered as future work.

Originality/value

Unlike other homogenization methods, the proposed method can be applied to non-impregnated and irregular windings. Also, compared to other homogenization methods, the proposed method has a simpler formulation that makes it easier to program and implement. All of these indicate the efficiency of the proposed method in the thermal analysis of the winding.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 20 December 2023

Oskar Szulc, Piotr Doerffer, Pawel Flaszynski and Marianna Braza

This paper aims to describe a proposal for an innovative method of normal shock wave–turbulent boundary layer interaction (SBLI) and shock-induced separation control.

Abstract

Purpose

This paper aims to describe a proposal for an innovative method of normal shock wave–turbulent boundary layer interaction (SBLI) and shock-induced separation control.

Design/methodology/approach

The concept is based on the introduction of a tangentially moving wall upstream of the shock wave and in the interaction region. The SBLI control mechanism may be implemented as a closed belt floating on an air cushion, sliding over two cylinders and forming the outer skin of the suction side of the airfoil. The presented exploratory numerical study is conducted with SPARC solver (steady 2D RANS). The effect of the moving wall is presented for the NACA 0012 airfoil operating in transonic conditions.

Findings

To assess the accuracy of obtained solutions, validation of the computational model is demonstrated against the experimental data of Harris, Ladson & Hill and Mineck & Hartwich (NASA Langley). The comparison is conducted not only for the reference (impermeable) but also for the perforated (permeable) surface NACA 0012 airfoils. Subsequent numerical analysis of SBLI control by moving wall confirms that for the selected velocity ratios, the method is able to improve the shock-upstream boundary layer and counteract flow separation, significantly increasing the airfoil aerodynamic performance.

Originality/value

The moving wall concept as a means of normal shock wave–turbulent boundary layer interaction and shock-induced separation control has been investigated in detail for the first time. The study quantified the necessary operational requirements of such a system and practicable aerodynamic efficiency gains and simultaneously revealed the considerable potential of this promising idea, stimulating a new direction for future investigations regarding SBLI control.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 560