Books and journals Case studies Expert Briefings Open Access
Advanced search

Search results

1 – 1 of 1
To view the access options for this content please click here
Article
Publication date: 20 April 2015

Numerical approaches to stability analysis of cylindrical composite shells based on load imperfections

Nikolay Asmolovskiy, Anton Tkachuk and Manfred Bischoff

Current procedures of buckling load estimation for thin-walled structures may provide very conservative estimates. Their refinement offers the potential to use structure…

HTML
PDF (1.4 MB)

Abstract

Purpose

Current procedures of buckling load estimation for thin-walled structures may provide very conservative estimates. Their refinement offers the potential to use structure and material properties more efficiently. Due to the large variety of design variables, for example laminate layup in composite structures, a prohibitively large number of tests would be required for experimental assessment, and thus reliable numerical techniques are of particular interest. The purpose of this paper is to analyze different methods of numerical buckling load estimation, formulate simulation procedures suitable for commercial software and give recommendations regarding their application. All investigations have been carried out for cylindrical composite shells; however similar approaches are feasible for other structures as well.

Design/methodology/approach

The authors develop a concept to apply artificial load imperfections with the aim to estimate as good as possible lower bounds for the buckling loads of shells for which the actual physical imperfections are not known. Single and triple perturbation load approach, global and local dynamic perturbation approach and path following techniques are applied to the analysis of a cylindrical composite shell with known buckling characteristics. Results of simulations are compared with published experimental data.

Findings

A single perturbation load approach is reproduced and modified. Buckling behavior for negative values of the perturbation load is examined and a pattern similar to a positive perturbation load is observed. Simulations with three perturbation forces show a decreased (i. e. more critical) value of the buckling load compared to the single perturbation load approach. Global and local dynamic perturbation approaches exhibit a behavior suitable for lower bound estimation for structures with arbitrary geometries.

Originality/value

Various load imperfection approaches to buckling load estimation are validated and compared. All investigated methods do not require knowledge of the real geometrical imperfections of the structure. Simulations were performed using a commercial finite element code. Investigations of sensitivity with respect to a single perturbation load are extended to the negative range of the perturbation load amplitude. A specific pattern for a global perturbation approach was developed, and based on it a novel simulation procedure is proposed.

Details

Engineering Computations, vol. 32 no. 2
Type: Research Article
DOI: https://doi.org/10.1108/EC-10-2013-0246
ISSN: 0264-4401

Keywords

  • Arc-length method
  • Buckling load
  • Dynamic perturbation load
  • Knock-down factor
  • Single perturbation load approach

Access
Only content I have access to
Only Open Access
Year
  • All dates (1)
Content type
  • Article (1)
1 – 1 of 1
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2021 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication sitemap

Policies and information

  • Privacy notice
  • Site policies
  • Modern Slavery Act Opens in new window
  • Chair of Trustees governance statement Opens in new window
  • COVID-19 policy Opens in new window
Manage cookies

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald Engage?

    You can join in the discussion by joining the community or logging in here.
    You can also find out more about Emerald Engage.

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Questions & More Information

    Answers to the most commonly asked questions here