Search results

1 – 5 of 5
Article
Publication date: 10 September 2019

Vyankatesh Prabhakar Bhaurkar and Ajaykumar Gulabsing Thakur

In the case of machines, structures and assemblies, the crack generation and propagation is becoming a great concern, especially in airplane wings, turbine blades and such…

Abstract

Purpose

In the case of machines, structures and assemblies, the crack generation and propagation is becoming a great concern, especially in airplane wings, turbine blades and such other applications. This is because these parts are very large in size and the crack size is very small, i.e. in microns. Hence, there is an important need to locate the crack and to find its severity before it starts to propagate and also to detect these parameters by on-site non-destructive testing methods. This paper aims to develop and test the methodology to locate an unknown single open crack in steel cantilever beam along with its severity.

Design/methodology/approach

This study covers analytical, numerical and experimental analysis for healthy and cracked beams. Vibration-based approach and finite element analysis (FEA) approach is used for analytical and numerical study respectively. Own designed and dedicated experimental set-up is used for testing purpose along with fast fourier transform analyzer. An anti-resonance technique is used to locate and to find the severity of unknown crack. The statistical approach helps to validate the results.

Findings

The comparison of the natural frequency of healthy and cracked steel cantilever beam shows that the crack in the beam reduces its natural frequency. The accuracy of results is achieved by finding actual density and Young's modulus of steel specimen under consideration. It is helpful to verify the health of the non-cracked beam by applying dye testing. The study of natural frequency and anti-resonance gives the location of crack and its depth also. The FEA approach proved to be an important tool for numerical analysis of cracked beam.

Research limitations/implications

The research is limited to steel material and surface cracks only.

Practical implications

Practically, this study highlights how to locate a surface crack in steel beam along with its depth, i.e. severity with great accuracy. Identification of the factors such as location and depth of a crack provide the severity of damage in airplane wings, turbine blades, bridges and many more, and thereby, it helps in safety at working vicinity.

Social implications

The identification and solutions of current research helps to predict the operational life of machine elements such as airplane wings, turbine blades, bridges and many more, and thereby, it helps in the safety of people in working vicinity of such structures.

Originality/value

The work presented, is based on original research and experimentation. This work is valued contribution in the field of methodologies applied for fault detection in structures and also determining its correctness by numerical and experimental work.

Details

Journal of Engineering, Design and Technology , vol. 17 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 20 December 2021

Manuele Bertoluzzo, Paolo Di Barba, Michele Forzan, Maria Evelina Mognaschi and Elisabetta Sieni

The purpose of this paper is to show how the EStra-Many method works on optimization problems characterized by high-dimensionality of the objective space. Moreover, a…

Abstract

Purpose

The purpose of this paper is to show how the EStra-Many method works on optimization problems characterized by high-dimensionality of the objective space. Moreover, a comparison with a more classical approach (a constrained bi-objective problem solved by means of NSGA-II) is done.

Design/methodology/approach

The six reactances of a compensation network (CN) for a wireless power transfer system (WPTS) are synthesized by means of an automated optimal design. In particular, an evolutionary algorithm EStra-Many coupled with a sorting strategy has been applied to an optimization problem with four objective functions (OFs). To assess the obtained results, a classical genetic algorithm NSGA-II has been run on a bi-objective problem, constrained by two functions, and the solutions have been analyzed and compared with the ones obtained by EStra-Many.

Findings

The proposed EStra-Many method identified a solution (CN synthesis) that enhances the WPTS, considering all the four OFs. In particular, to assess the synthesized CN, the Bode diagram of the frequency response and a circuital simulation were evaluated a posteriori; they showed good performance of the CN, with smooth response and without unwanted oscillations when fed by a square wave signal with offset. The EStra-Many method has been able to find a good solution among all the feasible solutions, showing potentiality also for other fields of research, in fact, a solution nondominated with respect to the starting point has been identified. From the methodological viewpoint, the main finding is a new formulation of the many-objective optimization problem based on the concept of degree of conflict, which gives rise to an implementation free from hierarchical weights.

Originality/value

The new approach EStra-Many used in this paper showed to properly find an optimal solution, trading-off multiple objectives. The compensation network so synthesized by the proposed method showed good properties in terms of frequency response and robustness. The proposed method, able to deal effectively with four OFs, could be applied to solve problems with a higher number of OFs in a variety of applications because of its generality.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 June 2019

Pavel Baranov, Tamara Nesterenko, Evgenii Barbin, Aleksej Koleda, Shuji Tanaka, Takashiro Tsukamoto, Ivan Kulinich, Dmitry Zykov and Alexander Shelupanov

Technological capabilities of manufacturing microelectromechanical system (MEMS) gyroscopes are still insufficient if compared to manufacturing high-efficient gyroscopes…

290

Abstract

Purpose

Technological capabilities of manufacturing microelectromechanical system (MEMS) gyroscopes are still insufficient if compared to manufacturing high-efficient gyroscopes and accelerometers. This creates weaknesses in their mechanical structure and restrictions in the measurement accuracy, stability and reliability of MEMS gyroscopes and accelerometers. This paper aims to develop a new architectural solutions for optimization of MEMS gyroscopes and accelerometers and propose a multi-axis MEMS inertial module combining the functions of gyroscope and accelerometer.

Design/methodology/approach

The finite element modeling (FEM) and the modal analysis in FEM are used for sensing, drive and control electrode capacitances of the multi-axis MEMS inertial module with the proposed new architecture. The description is given to its step-by-step process of manufacturing. Algorithms are developed to detect its angular rates and linear acceleration along three Cartesian axes.

Findings

Experimental results are obtained for eigenfrequencies and capacitances of sensing, drive and control electrodes for 50 manufactured prototypes of the silicon electromechanical sensor (SES). For 42 SES prototypes, a good match is observed between the calculated and simulated capacitance values of comb electrodes. Thus, the mean-square deviation is not over 20 per cent. The maximum difference between the calculated and simulated eigenfrequencies in the drive channel of 11 SES prototypes is not over 3 per cent. The same difference is detected for eigenfrequencies in the first sensing channel of 17 SES prototypes.

Originality/value

This study shows a way to design and optimize the structure and theoretical background for the development of the MEMS inertial module combining the functions of gyroscope and accelerometer. The obtained results will improve and expand the manufacturing technology of MEMS gyroscopes and accelerometers.

Details

Sensor Review, vol. 39 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 7 September 2015

Sándor Bilicz

The purpose of this paper is to discuss a numerically efficient simulation method for the study of the high-frequency behaviour of air-cored coils. The self-resonance…

Abstract

Purpose

The purpose of this paper is to discuss a numerically efficient simulation method for the study of the high-frequency behaviour of air-cored coils. The self-resonance phenomenon of coils can be studied which is important, e.g., in wireless power transfer (WPT).

Design/methodology/approach

A full-wave and a quasi-stationary integral formulation is introduced. The integral equation is solved by using the Method of Moments. The complex impedance of the coil is calculated and studied in a wide frequency band.

Findings

The integral equation method is numerically efficient compared to finite element schemes, making possible its use in design optimisation problems.

Research limitations/implications

The present model can treat homogeneous media only. Future research will focus on the extension of the approach to heterogeneous media.

Practical implications

The method can be used in the design optimisation of WPT systems that apply magnetically coupled resonant coils.

Originality/value

The presented computation scheme is original. Integral equation schemes have not been used for coil modelling before, to the best of the author’s knowledge.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 21 September 2015

Ricardo Garcia, Philippe Combette, Youri Poulin, Alain Foucaran, Jean Podlecki, Saniya Ben Hassen, Marie Angele Grilli, Olivier Hess and François Briant

The purpose of this paper is to report the study of vibration energy harvesting from a data center (DC) mainframe computer to power nodes of a wireless sensors network…

Abstract

Purpose

The purpose of this paper is to report the study of vibration energy harvesting from a data center (DC) mainframe computer to power nodes of a wireless sensors network (WSN are used to improve the energy efficiency of a DC).

Design/methodology/approach

The piezoelectric vibration energy harvester (VEH) has been designed using an electromechanical analytical model. The VEH is composed of a three-layer cantilever beam with a tip mass. A vibration map (amplitude and acceleration) is presented and the authors show that the optimum frequency is around 90 Hz with maximum amplitude of 1 μm and maximum acceleration of 0.6 m/s2. Modeling results and experimental measurements using an electromagnetic shaker to apply vibrations concord.

Findings

The VEH delivers a maximum power of 31 μW on a DC mainframe computer and 2.3 mW at 1g on a test rack. It allows us to use a storage capacitance to successfully power a wireless sensor node for measuring temperature. This paper has been carried out in cooperation with IBM Montpellier and within the framework of the RIDER project financed by the French government and the European Union.

Originality/value

A vibration map (amplitude and acceleration) is presented and the authors show that the optimal frequency is around 90 Hz with maximum amplitude of 1 μm and maximum acceleration of 0.6 m/s2. The VEH delivers a maximum power of 31 μW on DC mainframe computer and 2.3 mW at 1 g on test mounted the shaker. It allows us with a storage capacitance to successfully power a wireless sensor node for measuring temperature.

Details

Sensor Review, vol. 35 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 5 of 5