Search results

1 – 10 of 131
Article
Publication date: 8 March 2022

Ibrahim A. Amar, Sarah S. Kanah, Hibah A. Hijaz, Mabroukah A. Abdulqadir, Shamsi A. Shamsi, Ihssin A. Abdalsamed and Mohammed A. Samba

The purpose of this research is to assess the removal of oil spills from the seawater surface as well as the antibacterial activity of ZnFe2O4-cetyltrimethylammonium bromide…

Abstract

Purpose

The purpose of this research is to assess the removal of oil spills from the seawater surface as well as the antibacterial activity of ZnFe2O4-cetyltrimethylammonium bromide (CTAB, cationic surfactant) magnetic nanoparticles (ZFO-CTAB MNPs).

Design/methodology/approach

A CTAB-assisted sol–gel method was used to synthesize ZFO-CTAB MNPs. X-ray powder diffraction and Fourier transform infrared spectroscopy were used for ZFO-CTAB MNPs characterization. Also, the magnetic force and apparent density of ZFO-CTAB MNPs were determined. The oil spill cleanup was investigated by using the gravimetric oil removal (GOR) technique, which used ZFO-CTAB MNPs as oil absorbent material and four oil samples (crude, diesel, gasoline and used oil) as oil spill models. The antibacterial activity of ZFO-CTAB MNPs against Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi) was investigated by using the optical density method.

Findings

The results revealed that, when the amount of ZFO-CTAB was 0.01 g, gasoline oil had the highest GOR (51.80 ± 0.88 g/g) and crude oil had the lowest (11.29 ± 0.82 g/g). Furthermore, for Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa, ZFO-CTAB MNPs inhibited bacterial growth with a higher percentage (94.24%–95.63%).

Originality/value

The applications of ZFO-CTAB MNPs in the cleanup of oil spills from aqueous solutions, as well as their antibacterial activity. The results showed that ZFO-CTAB MNPs are a promising material for removing oil spills from bodies of water as well as an antibacterial agent against Gram-negative bacterial strains.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 April 2023

Saima Habib, Zulfiqar Ali Raza, Farzana Kishwar and Sharjeel Abid

This paper aims to develop an indigo-dyed denim fabric treated with a nanosilver colloid in the presence of a natural crosslinker of citric acid for possible surgical gown…

Abstract

Purpose

This paper aims to develop an indigo-dyed denim fabric treated with a nanosilver colloid in the presence of a natural crosslinker of citric acid for possible surgical gown fabrication applications.

Design/methodology/approach

A bleached denim fabric was dyed with the sustainable indigo dye followed by silver nanofinishing through citric acid crosslinking under the pad-dry-cure method. The prepared denim samples were analyzed for chemo-physical, textile, dyeing, antibacterial and finish release properties.

Findings

The results demonstrated that the comfort and textile characteristics of nanosilver-treated/indigo-dyed cellulosic fabric were affected due to the crosslinking, surface amphiphilicity and air permeability. These properties were, still, in the acceptable range for the fabrication of naturally dyed and antibacterial nanofinished denim gowns.

Practical implications

The dyeing of denim with synthetic dyes may cause harmful effects on the skin and health of the wearer, and the authors present an eco-friendly sustainable approach.

Originality/value

The authors used the fabric substrate, natural indigo dye and reducing/crosslinker agent of citric acid, all being bio-based, in the fabrication of antibacterial dyed fabric for health care garments.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 March 2022

T. Thendral Thiyaku

The purpose of this study is to develop active package films using clove essential oil (CEO) and biodegradable polybutylene adipate terephthalate (PBAT) with varying weight…

Abstract

Purpose

The purpose of this study is to develop active package films using clove essential oil (CEO) and biodegradable polybutylene adipate terephthalate (PBAT) with varying weight percentages of SiO2 nanoparticles (SiO2NPs), as well as to investigate the mechanical, barrier, thermal, optical, surface hydrophobicity and antibacterial properties of PBAT incorporated with CEO as a natural plasticizer and SiO2NPs as a nanofiller.

Design/methodology/approach

PBAT-based bio-composites films were fabricated with different weight percentage of CEO (5% and 10%) and nanosilica (1% and 3%) by solution casting method. The packaging performance was investigated using universal testing machine, spectrophotometer, contact angle goniometer, oxygen and water vapour permeability tester. The antibacterial properties of PBAT-based nanocomposite and composite films were investigated using the ISO 22196 by zone of inhibition method.

Findings

The mechanical results exhibited that the addition of 10 Wt.% of CEO into PBAT increases the percentage of elongation, whereas, the addition of 3 Wt.% of SiO2NPs increases the tensile strength of the composite film. The presence of CEO in PBAT exhibits a good barrier against water permeability and SiO2NPs in the PBAT matrix help to reduce the opacity and hydrophobicity. The antimicrobial and thermal results revealed that the inclusion of 10 Wt.% of CEO and 3 Wt.% of SiO2NPs into PBAT polymer improved antimicrobial and thermal resistance properties.

Originality/value

A new PBAT-based active packaging film developed using natural plasticizers CEO and nanofiller SiO2 with a wide range of applications in the active food packaging applications. Moreover, they have good surface hydrophobicity, thermal stability, mechanical, barrier and antibacterial properties.

Details

Pigment & Resin Technology, vol. 52 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 10 May 2022

Senthil Kumar Selvaraj, Srimathy B., Sakthivel S. and Senthil Kumar B.

In the past decade, the biopolymeric properties of chitosan (CH) have been largely exploited for various applications. This paper aims to study the use of CH in its nanoform, i.e…

Abstract

Purpose

In the past decade, the biopolymeric properties of chitosan (CH) have been largely exploited for various applications. This paper aims to study the use of CH in its nanoform, i.e. as nanofibers blended with polyvinyl alcohol (PVA) for various antimicrobial applications in detail. In particular, their ability toward bacterial growth inhibition, in vitro drug release and their biocompatibility toward tissue growth have been investigated in detail.

Design/methodology/approach

Electrospinning technique was adapted for depositing CH/PVA blended nanofilms on the silver foil under optimized conditions of high voltage. Three different concentrations of blended nanofiber samples were prepared and their antimicrobial properties were studied.

Findings

The bead diameter and average diameter of blended nanofibers increase with CH concentration. Antibacterial activity increases as CH concentration increases. Increased hydrophilicity in CH-enriched samples contributes to a higher drug release profile.

Originality/value

To the best of the authors’ knowledge, chick chorioallantoic membrane assay analysis has been carried out for the first time for CH/PVA films which shows that CH/PVA blends are biocompatible. CH after being converted as nanoparticles exhibits higher drug release rate by in vitro method.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 13 October 2022

Eman Salim, Wael S. Mohamed and Rasha Sadek

Paper aims to evaluate the efficiency of traditional chitosan, nano chitosan, and chitosan nanocomposites for consolidating aged papyrus samples. Cellulose-based materials, such…

Abstract

Purpose

Paper aims to evaluate the efficiency of traditional chitosan, nano chitosan, and chitosan nanocomposites for consolidating aged papyrus samples. Cellulose-based materials, such as papyrus sheets and paper, which are the most common types of writing supports for works of art in many museums and archive. They are subjected to different types of deterioration factors that may lead to many conservation problems. Consolidation treatment is one of the most common conservation treatments, which should have perform after much testing to select the appropriate consolidants.

Design/methodology/approach

This research paper aims to evaluate the resistance of traditional chitosan, nanochitosan and chitosan/zinc oxide nanocomposite as an eco-friendly papyrus strengthening. Untreated and treated papyrus was thermally aged and characterized via scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). Antimicrobial activity of the papyrus specimens was also determined against four tested pathogenic bacteria by disc diffusion method: MRSA, Staphylococcus aureus, E. coli and P. aeruginosa.

Findings

The results revealed that chitosan nanocomposite showed a remarkable enhancement of papyrus tensile properties and presence of ZnO prevents the effects of biodeterioration.

Originality/value

Zinc oxide nanoparticles enhance the optical properties and increase the chemical reactions between the consolidating material and the treated papyrus.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 August 2023

Gülşah Ekin Kartal

The aim of this study was to prepare antibacterial capsules and transfer them to cotton fabrics using the impregnation method.

Abstract

Purpose

The aim of this study was to prepare antibacterial capsules and transfer them to cotton fabrics using the impregnation method.

Design/methodology/approach

For this purpose, helichrysum oil was encapsulated by ß-cyclodextrin (ß-CD) using the kneading method at three different molar ratios. The products were then applied to 100% cotton fabric through the impregnation method.

Findings

Morphological assessment showed that the inclusion complex had smooth surfaces and spherical shapes. Fourier transform infrared spectroscopy and differential scanning calorimeter analysis results confirmed the formation of the inclusion complex between ß-CD and the active agent at mole ratios of 1:1, 1:2 and 1:3 for helichrysum oil. According to the analyses, it was determined that the highest complexing rate was between 9.72% and 1:2 in capsules containing ß-CD:helichrysum oil and the sizes of particles which is 1:2 are determined to be between 2 and 25 µm. The presence of capsules on the fabrics was determined after 5 washing cycles. Antibacterial activity was evaluated against Staphylococcus aureus and Escherichia coli bacteria. The antibacterial analysis results showed that the inclusion complex provided a reduction of over 96% against both S. aureus and E. coli bacteria, and the fabrics exhibited antibacterial effects even after 5 washing cycles. The major constituents of the oil were decreased after 5 washes, but significant peaks were remained according to the gas chromatography analyses. These results indicate that helichrysum oil can be used for its antibacterial properties, and it has been observed that this activity continues up to 5 washes when transferred to the fabric in the form of an inclusion complex.

Originality/value

Although helichrysum oil is widely used in cosmetics, there is a lack of studies on its application in textiles. Therefore, this study investigated the potential use of helichrysum oil, which has a wide range of applications, in textiles for its antibacterial properties through molecular encapsulation. The use of naturally sourced substances such as helichrysum oil in the textile industry can offer an environmental and sustainable alternative. This study can be considered as a step toward the development of innovative and naturally sourced antibacterial products in the textile industry.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 June 2023

Yunus Berkli, Ayşegül Zencirkıran and Fazlıhan Yılmaz

Natural dyeing has existed in human life from past to present. Although it lost its importance after the industrial revolution, it has started to make again a name for itself…

58

Abstract

Purpose

Natural dyeing has existed in human life from past to present. Although it lost its importance after the industrial revolution, it has started to make again a name for itself today with the increase in environmental awareness. The purpose of this study is to investigate whether the Hibiscus sabdariffa L. can be used in the coloring of woolen fabrics and as a natural antibacterial agent for these fabrics.

Design/methodology/approach

Within the scope of the study, it was investigated whether the antibacterial activity of the Hibiscus sabdariffa L. can be transferred to woolen fabrics. In the study, woolen fabric samples were dyed with and without mordant with the help of Hibiscus sabdariffa L. extract. After the dyed fabric samples were washed and dried, their color values were measured, and antibacterial effect tests (against Staphylococcus aureusEscherichia coli), washing and rubbing fastness tests were carried out. In addition to these, scanning electron microscopy images of dyed fabric samples were taken and Fourier transform infrared microspectroscopy analyzes were also performed.

Findings

As a result of the study, it has been determined that the antibacterial activity of the Hibiscus sabdariffa L. can be transferred to woolen fabrics without the use of any chemicals.

Originality/value

Natural antibacterial agent for woolen fabrics was obtained within the scope of the study without the use of chemicals.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 October 2023

Nonsikelelo Sheron Mpofu, Josphat Igadwa Mwasiagi, Cleophas Achisa Mecha and Eric Oyondi Nganyi

This study aims to investigate the potential use of potato peel extracts as antibacterial finishes for cotton fabrics against Staphylococcus aureus and Escherichia coli. Potato…

Abstract

Purpose

This study aims to investigate the potential use of potato peel extracts as antibacterial finishes for cotton fabrics against Staphylococcus aureus and Escherichia coli. Potato peels are abundant as waste and provide a natural, cheaper and sustainable alternative means of preventing the spread of bacterial infections on cotton fabric.

Design/methodology/approach

This research included the characterization of potato peel extracts, application of the extract onto cotton fabric and efficacy testing of the treated cotton fabric against bacteria. Phytochemical screening, agar well diffusion antibacterial test, minimum inhibitory concentration and Fourier transform infrared (FTIR) tests were used to characterize the extract. Antibacterial efficacy of the treated fabric was determined qualitatively using the disc diffusion assay and quantitatively using the bacteria reduction test.

Findings

Phytochemical screening confirmed the presence of several secondary metabolites including phenols and flavonoids. Antibacterial tests revealed a positive response in Escherichia coli and Staphylococcus aureus with a zone of inhibition of 6.50 mm and 5.60 mm, respectively. Additional peaks on the FTIR spectroscopy confirmed the presence of potato peel extract on the treated cotton fabric. The treated cotton fabrics showed efficacy against Staphylococcus aureus and Escherichia coli up to 20 washes.

Originality/value

This study introduced the application of potato peel extracts onto cotton fabrics and assessment of the antibacterial properties before and after washing. Results of this study suggest that potato peel extracts can be used as an organic eco-friendly antibacterial finish for cotton fabrics.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 12 May 2023

Saima Habib, Zulfiqar Ali Raza, Farzana Kishwar and Sharjeel Abid

Present study aimed to nanosilver-treat some commercially dyed denim fabric using an eco-friendly cross-linker of citric acid for possible application in the fabrication of…

Abstract

Purpose

Present study aimed to nanosilver-treat some commercially dyed denim fabric using an eco-friendly cross-linker of citric acid for possible application in the fabrication of sustainable antibacterial and nontoxic surgical gowns.

Design/methodology/approach

The conventional untreated surgical gowns are prone to bacterial attack making them unprotective and infection carriers. Thereby, nanosilver finishing of the surgical-grade dyed denim fabric was achieved via citrate cross-linking under the pad-dry-cure method. The hence treated denim fabrics were characterized for surface chemical, crystalline, textile, color and antibacterial attributes using both conventional and advanced analytical approaches.

Findings

The results expressed that the prepared denim specimens contained surface roughness at the nanoscale besides some alterations in their textile and color parameters. Both textile and comfort properties of the finished fabric remained in the acceptable range with effective antibacterial activity.

Practical implications

The silver nano-finished dyed denim expressed broad-spectrum antibacterial activity and qualified as a potential substrate in the fabrication of surgical gowns. Such sustainable application of nanosilver finishing could be perused for industrial implications.

Originality/value

This study presents citric acid as a crosslinking agent to impregnate the commercially dyed denim fabric for potential application in the fabrication of surgical gowns. The application of nanosilver on prior citrated dyed-grown fabrics could be a novel approach. This study used approximately all the reagents and auxiliaries as bio-based to ensure the nontoxicity and sustainability of the resultant fabric.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 September 2022

Saima Habib, Farzana Kishwar and Zulfiqar Ali Raza

The purpose of this study is to apply silver nanoparticles on the cellulosic fabric via a green cross-linking approach to obtain antibacterial textiles. The cellulosic fabrics may…

Abstract

Purpose

The purpose of this study is to apply silver nanoparticles on the cellulosic fabric via a green cross-linking approach to obtain antibacterial textiles. The cellulosic fabrics may provide an ideal enclave for microbial growth due to their biodegradable nature and retention of certain nutrients and moisture usually required for microbial colonization. The application of antibacterial finish on the textile surfaces is usually done via synthetic cross-linkers, which, however, may cause toxic effects and halt the biodegradation process.

Design/methodology/approach

Herein, we incorporated citrate moieties on the cellulosic fabric as eco-friendly crosslinkers for the durable and effective application of nanosilver finish. The nanosilver finish was then applied on the citrate-treated cellulosic fabric under the pad-dry-cure method and characterized the specimens for physicochemical, textile and antibacterial properties.

Findings

The results expressed that the as-prepared silver particles possessed spherical morphology with their average size in the nano range and zeta potential being −40 ± 5 mV. The results of advanced analytical characterization demonstrated the successful application of nanosilver on the cellulosic surface with appropriate dispersibility.

Practical implications

The nanosilver-treated fabric exhibited appropriate textile and comfort and durable broad-spectrum antibacterial activity.

Originality/value

The treated cellulosic fabric expressed that the cross-linking, crystalline behavior, surface chemistry, roughness and amphiphilicity could affect some of its comfort and textile properties yet be in the acceptable range for potential applications in medical textiles and environmental sectors.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 131