Search results

1 – 10 of 372
Article
Publication date: 8 January 2018

Xinlei Gao, Tingting Wang and Zhong Cheng

Ultra-high molecular weight polyethylene (UHMWPE) has an excellent performance and application value; however, as a tribological material, its main drawback is its poor…

Abstract

Purpose

Ultra-high molecular weight polyethylene (UHMWPE) has an excellent performance and application value; however, as a tribological material, its main drawback is its poor performance under dry friction, impacting its ability to work in high-speed dry friction conditions. Modification of UHMWPE can be carried out to overcome these issues. A significant number of inorganic materials have been used to modify UHMWPE and provide it with good tribological performance. However, thus far, there has been no systematic investigation into the methodology of modifying UHMWPE. The authors take a quantitative approach to determine the structure tribo-ability relationship and basic principles of screening of inorganic compounds suited to modify UHMWPE.

Design/methodology/approach

The tribological properties of modified UHMWPE using a series of inorganic additives have been qualitatively studied by the authors’ research group previously. In this study, basic quantitative structure tribo-ability relationships (QSTRs) of inorganic additives for modifying UHMWPE were studied to predict tribological properties. A set of 15 inorganic compounds and their tribological data were used to study the predictive capability of QSTR towards inorganic additives properties.

Findings

The results show that the anti-wear and friction-reducing properties of these inorganic compounds correlate with the calculated parameters of entropy and dipole moment. Increased entropy and smaller dipole moment can effectively improve the anti-wear and friction-reducing ability of inorganic compounds as UHMWPE additives. Additives with larger molecular weight, lower hardness and lower melting and boiling points provide good tribological properties for UHMWPE. For inorganic compounds to act as UHMWPE additives, the chemical bond should be less covalent and have more ionic character.

Research limitations/implications

Only 15 inorganic compounds and their tribological data were used to study the predictive capability of QSTR towards inorganic additives properties. If the samples number is more than 30, the other QSTR methodology can be used to study the modified UHMWPE, and the models finding can be more precise.

Practical implications

A QSTR model for modified UHMWPE has been studied systematically. While the results are not more precise and detailed, the model provides a new way to explore the modified UHMWPE characteristics and to reveal new insight into the friction and wear process.

Social implications

Because the method of studying tribological materials is entirely different from others, the authors want to present the works and discuss it with colleagues.

Originality/value

The paper presents a new method to study the modified UHMWPE. A QSTR is used to study the tribology capability of compounds from calculated structure descriptors. This study uses the Hartree–Fock ab initio method to establish a QSTR prediction model to estimate the ability of 15 inorganic compounds to act as anti-wear and friction-reducing additives for UHMWPE.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 May 2023

Yuhai Shen, Yanshuang Wang, Jianghai Lin, Pu Zhang, Xudong Gao and Zijun Wang

This paper aims to determine a suitable anti-wear and friction-reducing compounding additive for lithium greases (LG) by investigating the effects of three single additives…

Abstract

Purpose

This paper aims to determine a suitable anti-wear and friction-reducing compounding additive for lithium greases (LG) by investigating the effects of three single additives potassium borate (PB), zinc dialkyl dithiophosphate and molybdenum dialkyl dithiophosphate (MoDDP) and two compound additives on the friction, wear and extreme pressure properties of LG.

Design/methodology/approach

The effects of the above five additives on the friction, wear and extreme pressure properties of LG were investigated using an SRV-5 friction tester. An X-ray photoelectron spectrometer was used to analyze the various elements presented on the wear surface as well as the types of compounds.

Findings

The compound additive suitable for grease consists of PB and MoDDP, which have excellent friction reduction, anti-wear and extreme pressure properties. And a boundary protection film consisting of oxide and MoS2 is formed on the friction surface, thus improving the friction reduction and anti-wear performance of the grease.

Originality/value

This study can improve the anti-wear and friction-reduction performance of greases, which is of great importance in the field of industrial lubrication. The results of this paper are expected to be useful to researchers and academics of grease.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2022-0350/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 October 2018

Leihua Xu, Yong Zhang, Dekun Zhang and Mei Leng

This paper aims to report the tribological behavior of Ag nanoparticles/reduced graphene oxide nanocomposites (Ag/RGO NCs) and Ag nanoparticles (Ag NPs) as a green additive in oil…

Abstract

Purpose

This paper aims to report the tribological behavior of Ag nanoparticles/reduced graphene oxide nanocomposites (Ag/RGO NCs) and Ag nanoparticles (Ag NPs) as a green additive in oil with different concentration and under different friction conditions.

Design/methodology/approach

The Ag/RGO NCs and Ag NPs were both synthesized in a chemical reduction method. The diameter of silver nanoparticles implanted between RGO sheets was about 25 nm and that of silver sol was 70 nm. The morphology and structure of Ag/RGO NC were characterized by TEM, XRD and FTIR. The tribological properties of Ag/RGO NCs and Ag NPs as lubricant oil additive were evaluated by measuring the friction coefficients and wear of the surface in different condition which were tested on UMT-II.

Findings

The results indicated that both the additives improved the friction-reduced and anti-wear properties of paraffin oil, and Ag/RGO NCs has better tribological performance than Ag NPs. The excellent tribological properties were attributed to the special structure of Ag/RGO NC and the formation of tribofilm reducing the friction and wear on the shearing surfaces.

Research limitations/implications

It is relatively difficult to observe the morphology of the lubricant film formed on the friction surface and to analyze the chemical composition at different depths of the lubricant film.

Originality/value

It is the first time for Ag/RGO NCs to be applied to improve the friction-reduced and anti-wear properties of lubricant oil as additive.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 July 2018

Qiang He, Zhigang Wang, Anling Li, Yachen Guo and Songfeng Liu

Nanoparticles as the grease additives play an important role in anti-wear and friction-reducing property during the mechanical operation. To improve the lubrication action of…

Abstract

Purpose

Nanoparticles as the grease additives play an important role in anti-wear and friction-reducing property during the mechanical operation. To improve the lubrication action of grease, the tribological behavior of lithium-based greases with single (nanometer Al2O3 or nanometer ZnO) and composite additives (Al2O3–ZnO nanoparticles) were investigated in this paper.

Design/methodology/approach

The morphology and microstructure of nanoparticles were characterized by means of transmission electron microscope and X-ray diffraction. Tribological properties of different nanoparticles as additives in lithium-based greases were evaluated using a universal friction and wear testing machine. In addition, the friction coefficient (COF) and wear scar diameter were analyzed. The surface morphology and element overlay of the worn steel surface were analyzed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), respectively.

Findings

The results show that the greases with nanometer Al2O3 or nanometer ZnO and the composite nanoparticles additives both exhibit lower COFs and wear scar diameters than those of base grease. And the grease with Al2O3–ZnO composite nanoparticles possesses much lower COF and shows much better wear resistance than greases with single additives. When the additives contents are 0.4 Wt.% Al2O3 and 0.6 Wt.% ZnO, the composite nanoparticles-based grease exhibits the lowest mean COF (0.04) and wear scar diameter (0.65 mm), which is about 160% and 28% lower than those of base grease, respectively.

Originality/value

The main innovative thought of this work lies in dealing with the grease using single or composite nanoparticles. And through a serial contrast experiments, the anti-wear and friction-reducing property with different nanoparticles additives in lithium grease are evaluated.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 April 2012

Boshui Chen, Weijiu Huang and Jianhua Fang

The purpose of this paper is to understand the impacts of oleoyl glycine on biodegradation, friction and wear performances of a mineral lubricating oil.

Abstract

Purpose

The purpose of this paper is to understand the impacts of oleoyl glycine on biodegradation, friction and wear performances of a mineral lubricating oil.

Design/methodology/approach

The biodegradabilities of a neat oil and its formulations with oleoyl glycine were evaluated on a biodegradation tester and the microbial characters in the biodegradation sewage observed through a microscope. Also, the friction and wear performances of neat oil and the formulated oil were determined on a four‐ball tribometer. The morphologies and tribochemical features of the worn surfaces were analyzed by scanning electron microscopy and X‐ray photoelectron spectroscopy.

Findings

Oleoyl glycine markedly enhanced biodegradation of unreadily biodegradable mineral oil and effectively improved its anti‐wear and frictionreducing abilities. The enhancement of biodegradability of the mineral oil was preliminarily ascribed to the increment of microbial populations in the biodegradation processes, while the improvement of anti‐wear and frictionreducing abilities was mainly attributed to the formation of a boundary adsorption film of oleoyl glycine on the friction surfaces.

Originality/value

Oleoyl glycine is a biodegradable and low eco‐toxic compound. The authors' work has shown that oleoyl glycine is effective in improving biodegradability and tribological performances of mineral lubricants. Enhancing biodegradability of petroleum‐based lubricants by additives is a new attempt. The paper has significance for improving ecological and tribological performances of mineral lubricants, even for developing petroleum‐based biodegradable lubricants.

Details

Industrial Lubrication and Tribology, vol. 64 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 February 2012

Hao‐Bo Zhang, Yan‐qiu Xia, Zhi‐lu Liu and Jun Zhao

The purpose of this paper is to test two kinds of rare earth complexes of Lanthanum Dialkyldithiophosphate (LaDDP) and Lanthanum Dialkylphosphate (LaDP) as lubricant additives in…

Abstract

Purpose

The purpose of this paper is to test two kinds of rare earth complexes of Lanthanum Dialkyldithiophosphate (LaDDP) and Lanthanum Dialkylphosphate (LaDP) as lubricant additives in liquid paraffin for the untreated 60Si2Mn steel and laser‐cladding Ni35A coating on 60Si2Mn steel sliding pairs which are a potential substitute for Zinc Dialkldithiophosphate (ZnDDP).

Design/methodology/approach

Tribological properties were evaluated by an Optimol‐SRV oscillating friction and wear test. The morphologies of the worn surfaces were observed by a scanning electron microscope (SEM), and the chemical states of several typical elements on the worn surfaces were examined by means of X‐ray photoelectron spectroscopy (XPS).

Findings

Treated laser cladding coatings of steel can improve its hardness and strength and the coated steel possess higher load‐carrying capacity than that of 60Si2Mn; The rare earth complexes of LaDDP and LaDP possess good oil‐solubility, frictionreducing and wear resistance properties. Those rare earth complexes as additives in liquid paraffin during the friction process can form a protective film containing rare earth oxide, sulfate and sulfur‐containing compound during the friction process.

Research limitations/implications

The paper presents two kinds of potentially useful, environmentally‐friendly and highly efficient substitutes for the ZnDDP additives in lubricants.

Practical implications

Owing to their good frictionreducing and wear resistance properties, LaDDP and LaDP are two optimum and promising industry lubrication additives.

Originality/value

This work is a new application of rare earth complex as lubricant additive in liquid paraffin, which provides a new direction for designing friction pairs and lubricant additive. The tribology experiments have been carried out through the variation of experiment conditions.

Details

Industrial Lubrication and Tribology, vol. 64 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 August 2018

Hao-bo Zhang, Hui Chen, Xiao-ning Shi, Xiong Liu and Guo-jian Duan

The purpose of this paper is to study the influence of alkyl chain length and kind of anions of ionic liquids on the tribological properties with different materials as friction

Abstract

Purpose

The purpose of this paper is to study the influence of alkyl chain length and kind of anions of ionic liquids on the tribological properties with different materials as friction pairs (steel-aluminum, steel-copper and steel-Si3N4 ceramic).

Design/methodology/approach

Tribological properties were evaluated by an optimol-SRV-IV reciprocation friction tester with a ball-on-block configuration at room temperature and high temperature, respectively. Friction-reducing and anti-wear properties of the ionic liquids for steel/aluminum, steel/copper and steel/ceramic contacts were evaluated on the ball-on-block reciprocating UMT-2MT tribometer. The morphologies of the worn surfaces were observed by a scanning electron microscope. The chemical states of several typical elements on the worn surfaces were examined by X-ray photoelectron spectroscopy.

Findings

Both the alkyl chain length and kind of anion influence the tribological properties of ionic liquids, especially for the length of alkyl chains. With the increase of alkyl chain length, the load carrying capacity of ionic liquids is improved at both room temperature and high temperature, and the friction reducing and antiwear behaviors are also significantly enhanced.

Research limitations/implications

The paper presents potentially useful and highly efficient lubricants.

Practical implications

Owing to their good friction-reducing and wear resistance properties, these ionic liquids are promising candidates for versatile applications.

Originality/value

This work might provide a promising research direction for design and application of ionic liquids as lubricants.

Details

Industrial Lubrication and Tribology, vol. 70 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 June 2018

Zeqi Jiang, Jianhua Fang, Fei Chen, Boshui Chen and Kecheng Gu

This paper aims at understanding tribological properties of lubricating oils doped with zinc dithiophosphate(ZDDP) with and without electromagnetic field impact.

Abstract

Purpose

This paper aims at understanding tribological properties of lubricating oils doped with zinc dithiophosphate(ZDDP) with and without electromagnetic field impact.

Design/methodology/approach

The friction and wear properties of the oils formulated with zinc butyloctyl dithiophosphate (T202) or zinc dioctyl dithiophosphate (T203) under electromagnetic field or nonelectromagnetic field were evaluated on a modified four-ball tribotester. The characteristics of the worn surfaces obtained from electromagnetic or nonelectromagnetic field conditions were analyzed by scanning electronic microscopy, energy dispersive spectrometer and X-ray photoelectron spectroscopy. This paper focuses on understanding influence of electromagnetic field on lubrication effect of the ZDDP-formulated oils.

Findings

The electromagnetic field could effectively facilitate anti-wear and friction-reducing properties of the oils doped with T202 or T203 as compared to those without electromagnetism affection, and the T203-doped oils were more susceptible to the electromagnetic field. The improvement of anti-wear and friction-reducing abilities of the tested oils were mainly attributed to the promoted tribochemical reactions and the modification of the worn surfaces (forming Zn-Fe solid solution) induced by the electromagnetic field.

Originality/value

This paper has revealed that tribological performances of ZDDP-doped oils could be improved by the electromagnetic field and discussed its lubrication mechanisms. Investigating tribological properties of additives from the viewpoint of electromagnetics is a new attempt, which has significance not only for the choose and designing of additives in electromagnetic condition but also for development of tribological theories and practices.

Article
Publication date: 8 January 2024

Zhicai Du, Qiang He, Hengcheng Wan, Lei Zhang, Zehua Xu, Yuan Xu and Guotao Li

This paper aims to improve the tribological properties of lithium complex greases using nanoparticles to investigate the tribological behavior of single additives (nano-TiO2 or…

Abstract

Purpose

This paper aims to improve the tribological properties of lithium complex greases using nanoparticles to investigate the tribological behavior of single additives (nano-TiO2 or nano-CeO2) and composite additives (nano-TiO2–CeO2) in lithium complex greases and to analyze the mechanism of their influence using a variety of characterization tools.

Design/methodology/approach

The morphology and microstructure of the nanoparticles were characterized by scanning electron microscopy and an X-ray diffractometer. The tribological properties of different nanoparticles, as well as compounded nanoparticles as greases, were evaluated. Average friction coefficients and wear diameters were analyzed. Scanning electron microscopy and three-dimensional topography were used to analyze the surface topography of worn steel balls. The elements present on the worn steel balls’ surface were analyzed using energy-dispersive spectroscopy and X-ray photoelectron spectroscopy.

Findings

The results showed that the coefficient of friction (COF) of grease with all three nanoparticles added was low. The grease-containing composite nanoparticles exhibited a lower COF and superior anti-wear properties. The sample displayed its optimal tribological performance when the ratio of TiO2 to CeO2 was 6:4, resulting in a 30.5% reduction in the COF and a 29.2% decrease in wear spot diameter compared to the original grease. Additionally, the roughness of the worn spot surface and the maximum depth of the wear mark were significantly reduced.

Originality/value

The main innovation of this study is the first mixing of nano-TiO2 and nano-CeO2 with different sizes and properties as compound lithium grease additives to significantly enhance the anti-wear and friction reduction properties of this grease. The results of friction experiments with a single additive are used as a basis to explore the synergistic lubrication mechanism of the compounded nanoparticles. This innovative approach provides a new reference and direction for future research and development of grease additives.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2023-0291/

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 February 2012

Zhang Yidong

The purpose of this paper is to prove the self‐repairing Cu film of Cu‐DDP additive in base lubricating oil.

Abstract

Purpose

The purpose of this paper is to prove the self‐repairing Cu film of Cu‐DDP additive in base lubricating oil.

Design/methodology/approach

Cu nanoparticles coated with dialkydithiophosphate (Coded as Cu‐DDP) were synthesized in situ by redox method. The size and structure of Cu‐DDP were characterized using transmission electronic microscopy (TEM) and electronic diffraction (ED) analysis. The self‐repairing performance of Cu‐DDP as additive in base lubricating oil was evaluated by MRH‐3 stock‐on‐ring testing machine. Scanning electronic microscopy (SEM), UMT‐2 tribometer, X‐ray photoelectron spectroscopy (XPS), and energy‐dispersive spectrum (EDS) were used to study the self‐repairing Cu film on the stock.

Findings

The test results showed that the modified Cu‐DDP additive in base lubricating oil exhibited excellent anti‐wear and frictionreducing properties, as well as good self‐repairing performance.

Research limitations/implications

The thickness of the self‐repairing Cu film was unknown, and the relationship between thickness of the Cu film and load, time, rotation velocity was still necessary to investigate.

Practical implications

The Cu‐DDP additive was involved P and S elements, therefore, it is still promising to seek environment friendly additive without P and S elements.

Originality/value

For the first time, MRH‐3 stock‐on‐ring testing machine, Scanning electronic microscopy (SEM), UMT‐2 tribometer, X‐ray photoelectron spectroscopy (XPS), and energy‐dispersive spectrum (EDS) were widely used to study the self‐repairing Cu film on the stock.

Details

Industrial Lubrication and Tribology, vol. 64 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 372