Search results

1 – 10 of 24
Article
Publication date: 2 March 2023

Walid E. Elgammal, Essam M. Eliwa, Hosni A. Goomaa, Medhat E. Owda and H. Abd El-Wahab

This paper aims to focus on the synthesis of the macrocyclic complexes (Cu and Zn) and their applications as anticorrosive materials in epoxy paint formulation for surface coating…

Abstract

Purpose

This paper aims to focus on the synthesis of the macrocyclic complexes (Cu and Zn) and their applications as anticorrosive materials in epoxy paint formulation for surface coating application.

Design/methodology/approach

A selected macrocyclic Cu(II) and Zn(II) complexes were prepared via template synthesis and characterized using Fourier transform infrared, thermal gravimetric analysis, scanning electron microscope, flexibility, hardness and adhesion of coating films prepared using epoxy paint.

Findings

The corrosion resistance of the epoxy-painted films was improved due to the incorporation of the Zn and Cu complexes into the formulation.

Originality/value

It was found that the metal complex-based formulation with Cu(II) and Zn(II) had outperformed the sample blank.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 20 July 2023

Reza Amini and Pooneh Kardar

This paper aims to achieve an anti-corrosive coating via uniform dispersion of nanoclay particles (montmorillonite) and polypyrrole (PPy) as a conductive polymer as well as their…

Abstract

Purpose

This paper aims to achieve an anti-corrosive coating via uniform dispersion of nanoclay particles (montmorillonite) and polypyrrole (PPy) as a conductive polymer as well as their effects on the anti-corrosion features in the presence of the eco-friendly ionic liquids (ILs).

Design/methodology/approach

In this research, PPy with different forms of nanoclay were used. Moreover, ILs additive is used to enhance the better dispersion process of clay and PPy nanoparticles in the resin.

Findings

As a result, the IL additive in the formulation of nano-composite coatings greatly improves the dispersion process of clay and PPy nanoparticles in the resin. Due to its high compatibility with polyurethane resin and clay and PPy nanoparticles, this additive contains a high dispersing power to disperse the investigated nanoparticles in the resin matrix.

Research limitations/implications

High polarity of ILs as well as abilities to dissolve both mineral and organic materials, they can provide the better chemical processes compared to common solvents.

Practical implications

IL abilities have not been discovered to a large extent such as catalysts and detectors.

Social implications

ILs have been emerging as promising green solvents to replace conventional solvents in recent years. They possess unique properties such as nonvolatility, low toxicity, ease of handling, nonflammability and high ionic conductivity. Thus, they have received much attention as green media for various chemistry processes.

Originality/value

The simultaneous existence of clay, PPy and IL additive in the nano-composite coating formulation is responsible for the high corrosion resistance of the coating.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 June 2023

Roma G. Elfadel, Hala M. Refat, H. Abdelwahab, Salem S. Salem, Mohamed A. Awad and M.A.M. Abdel Reheim

This paper aims to investigate the prepared modified alkyd and poly(ester-amide) (PEA) resins as antimicrobial and insecticide binders for surface coating applications.

56

Abstract

Purpose

This paper aims to investigate the prepared modified alkyd and poly(ester-amide) (PEA) resins as antimicrobial and insecticide binders for surface coating applications.

Design/methodology/approach

Salicylic diethanolamine and 4-(N, N-dimethylamino) benzylidene glutamic acid were prepared and used as new sources of polyol and dibasic acid for PEA and alkyd resins, then confirmed by: acid value, FT-IR and 1H-NMR. The coating performance of the resins was determined using measurements of physico-mechanical properties. The biological and insecticide activities of the prepared resins were investigated.

Findings

The tests carried out revealed that the modified PEA and alkyd enhanced both phyisco-mechanical and chemical properties in addition to the biological and insecticide activities. The results of this paper illustrate that the introduction of salicylic diethanolamine and 4-(N, N-dimethylamino) benzylidene glutamic acid within the resin structure improved the film performance and enhanced the antimicrobial activity performance of PEA and alkyd resins.

Research limitations/implications

The modified alkyd and PEA organic resins can be used as biocidal binders when incorporated into paint formulations for multiple surface applications, especially those that are exposed to several organisms.

Originality/value

Modified alkyd and PEA resins based on newly synthesized modifiers have a significant potential to be promising in the production and development of antimicrobial and insecticide paints, allowing them to function to restrict the spread of insects and microbial infection.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 May 2023

Fuping Bian and Shudong Lin

This paper aims to investigate the effects on coatings performance in the epoxy silicone resin system owing to the existence of the different chain length of open-chain epoxy…

Abstract

Purpose

This paper aims to investigate the effects on coatings performance in the epoxy silicone resin system owing to the existence of the different chain length of open-chain epoxy monomer. In this paper, [4-Methylphenyl-(4–(2-methylpropyl) phenyl)]iodonium as photoinitiator was added into epoxy silicone resin by ultraviolet (UV)-cured polymerization to investigate the effects on coatings performance owing to the existence of the different chain length of open-chain epoxy monomer.

Design/methodology/approach

A simple hydrosilylation reaction was used to synthesize epoxy-based silicone prepolymers by using hydrogen-terminated polydimethylsiloxane, 1,2-epoxy-5-hexene, 1,2-epoxy-7-octene and 1,2-epoxy-9-decene as precursors.

Findings

The results revealed that the glass transition temperatures (Tg) and hydrophobicity increased with the chain length of open-chain epoxy monomer in the UV curable epoxy-based silicone coatings, and these films had excellent heat resistance, hydrophobicity, antigraffiti and ink removal properties.

Research limitations/implications

The cationic photocuring systems are not susceptible to the effect of oxygen inhibition. However, the limitation of cationic light curing process is that it requires a long curing time.

Originality/value

The coatings prepared via the UV curing approach can provide superior antismudge effects, and thus they are promising candidates for use in various industries, especially in fields such as antismudge coatings and antigraffiti coatings.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 April 2023

Kawaljit Singh Randhawa

The purpose of this study is to prepare a state-of-the-art review on advanced ceramic materials including their fabrication techniques, characteristics, applications and…

Abstract

Purpose

The purpose of this study is to prepare a state-of-the-art review on advanced ceramic materials including their fabrication techniques, characteristics, applications and wettability.

Design/methodology/approach

This review paper presents the various types of advanced ceramic materials according to their compounding elements, fabrication techniques of advanced ceramic powders as well as their consolidation, their characteristics, applications and wetting properties. Hydrophobic/hydrophilic properties of advanced ceramic materials are described in the paper with their state-of-the-art application areas. Optical properties of fine ceramics with their intrinsic characteristics are also presented within. Special focus is given to the brief description of application-based manipulation of wetting properties of advanced ceramics in the paper.

Findings

The study of wetting/hydrophobicity/hydrophilicity of ceramic materials is important by which it can be further modified to achieve the required applications. It also makes some sense that the material should be tested for its wetting properties when it is going to be used in some important applications like biomedical and dental. Also, these advanced ceramics are now often used in the fabrication of filters and membranes to purify liquid/water so the study of wetting characteristics of these materials becomes essential. The optical properties of advanced ceramics are equally making them suitable for many state-of-the-art applications. Dental, medical, imaging and electronics are the few sectors that use advanced ceramics for their optical properties.

Originality/value

This review paper includes various advanced ceramic materials according to their compounding elements, different fabrication techniques of powders and their consolidation, their characteristics, various application area and hydrophobic/hydrophilic properties.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 January 2024

Masoud Parsi, Vahid Baradaran and Amir Hossein Hosseinian

The purpose of this study is to develop an integrated model for the stochastic multiproject scheduling and material ordering problems, where some of the prominent features of…

Abstract

Purpose

The purpose of this study is to develop an integrated model for the stochastic multiproject scheduling and material ordering problems, where some of the prominent features of offshore projects and their environmental-degrading effects have been embraced as well. The durations of activities are uncertain in this model. The developed formulation is tri-objective that seeks to minimize the expected time, total cost and CO2 emission of all projects.

Design/methodology/approach

A new version of the multiobjective multiagent optimization (MOMAO) algorithm has been proposed to solve the amalgamated model. To empower the MOMAO, various procedures of this algorithm have been modified based on the multiattribute utility theory (MAUT) technique. Along with the MOMAO, this study has employed four other meta-heuristic methodologies to solve the model as well.

Findings

The outputs of the MOMAO have been put to test against four other optimizers in terms of convergence, diversity, uniformity and computation times. The results of the Mean Ideal Distance (MID) metric have revealed that the MOMAO has strongly prevailed its rival optimizers. In terms of diversity of the acquired solutions, the MOMAO has ranked the first among all employed optimizers since this algorithm has offered the best solutions in 56.66 and 63.33% of the test problems regarding the diversification metric and hyper-volume metrics. Regarding the uniformity of results, which is measured through the spacing metric (SP), the MOMAO has presented the best SP values in more than 96% of the test problems. The MOMAO has needed more computation times in comparison to its rivals.

Practical implications

A real case study comprising two concurrent offshore projects has been offered. The proposed formulation and the MOMAO have been implemented for this case study, and their effectiveness has been appraised.

Originality/value

Very few studies have focused on presenting an integrated formulation for the stochastic multiproject scheduling and material ordering problems. The model embraces some of the characteristics of the offshore projects which have not been adequately studied in the literature. Limited capacities of the offshore platforms and cargo vessels have been embedded in the proposed model. The offshore platforms have spatial limitations in storing the required materials. The vessels are also capacitated and they also have limited shipment capacities. Some of the required materials need to be transported from the base to the offshore platform via a fleet of cargo vessels. The workforces and equipment can become idle on the offshore platform due to material shortage. Various offshore-related costs have been integrated as a minimization objective function in the model. The cargo vessels release CO2 detrimental emissions to the environment which are sought to be minimized in the developed formulation. To the best of the authors' knowledge, the MOMAO has not been sufficiently employed as a solution methodology for the stochastic multiproject scheduling and material ordering problems.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 14 December 2023

Yajun Chen, Zehuan Sui and Juan Du

This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain…

Abstract

Purpose

This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain literature review supports and development direction suggestions for future research on intelligent self-healing coatings in aviation.

Design/methodology/approach

This mini-review uses a systematic literature review process to provide a comprehensive and up-to-date review of intelligent self-healing anti-corrosion coatings that have been researched and applied in the field of aviation in recent years. In total, 64 articles published in journals in this field in the last few years were analysed in this paper.

Findings

The authors conclude that the incorporation of multiple external stimulus-response mechanisms makes the coatings smarter in addition to their original self-healing corrosion protection function. In the future, further research is still needed in the research and development of new coating materials, the synergistic release of multiple self-healing mechanisms, coating preparation technology and corrosion monitoring technology.

Originality/value

To the best of the authors’ knowledge, this is one of the few systematic literature reviews on intelligent self-healing anti-corrosion coatings in aviation. The authors provide a comprehensive overview of the topical issues of such coatings and present their views and opinions by discussing the opportunities and challenges that self-healing coatings will face in future development.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 21 February 2024

Nehal Elshaboury, Tarek Zayed and Eslam Mohammed Abdelkader

Water pipes degrade over time for a variety of pipe-related, soil-related, operational, and environmental factors. Hence, municipalities are necessitated to implement effective…

Abstract

Purpose

Water pipes degrade over time for a variety of pipe-related, soil-related, operational, and environmental factors. Hence, municipalities are necessitated to implement effective maintenance and rehabilitation strategies for water pipes based on reliable deterioration models and cost-effective inspection programs. In the light of foregoing, the paramount objective of this research study is to develop condition assessment and deterioration prediction models for saltwater pipes in Hong Kong.

Design/methodology/approach

As a perquisite to the development of condition assessment models, spherical fuzzy analytic hierarchy process (SFAHP) is harnessed to analyze the relative importance weights of deterioration factors. Afterward, the relative importance weights of deterioration factors coupled with their effective values are leveraged using the measurement of alternatives and ranking according to the compromise solution (MARCOS) algorithm to analyze the performance condition of water pipes. A condition rating system is then designed counting on the generalized entropy-based probabilistic fuzzy C means (GEPFCM) algorithm. A set of fourth order multiple regression functions are constructed to capture the degradation trends in condition of pipelines overtime covering their disparate characteristics.

Findings

Analytical results demonstrated that the top five influential deterioration factors comprise age, material, traffic, soil corrosivity and material. In addition, it was derived that developed deterioration models accomplished correlation coefficient, mean absolute error and root mean squared error of 0.8, 1.33 and 1.39, respectively.

Originality/value

It can be argued that generated deterioration models can assist municipalities in formulating accurate and cost-effective maintenance, repair and rehabilitation programs.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 24 April 2024

Vahid Ahmadi, Seyed Mohammad Ali Hosseini, Effat Jamalizadeh and Razie Naghizade

This paper aims to investigate the corrosion resistance of two types of coatings – one is ceria sol coating and the other is ceria sol coating modified by ZnO nanoparticles on…

Abstract

Purpose

This paper aims to investigate the corrosion resistance of two types of coatings – one is ceria sol coating and the other is ceria sol coating modified by ZnO nanoparticles on 7075 aluminum alloy in 3.5% NaCl solution.

Design/methodology/approach

Aluminum alloys were dipped into ceria sol and ceria sol modified by ZnO nanoparticles separately and removed after 10 min from the solutions and dried at 110°C for 30 min and heated at 500 °C for 30 min to form the coatings. The coatings have been characterized by using field emission scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The EIS tests were performed in a corrosive solution of 3.5% NaCl.

Findings

The results showed that the coating of ceria sol modified by ZnO nanoparticles has higher corrosion resistance than the ceria sol coating and the bare sample. Also, the best efficiency is related to aluminum sample immersion after 1 h in NaCl corrosive solution for coating modified by ZnO nanoparticles.

Originality/value

In this research, the modification of ceria sol coating by ZnO nanoparticles had an effect on improving the corrosion behavior of aluminum alloy. It is also understood that modification of coatings is an effective parameter on corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 August 2023

Chigoziri N. Njoku, Temple Uzoma Maduoma, Wilfred Emori, Rita Emmanuel Odey, Beshel M. Unimke, Emmanuel Yakubu, Cyril C. Anorondu, Daniel I. Udunwa, Onyinyechi C. Njoku and Kechinyere B. Oyoh

Corrosion is a major concern for many industries that use metals as structural or functional materials, and the use of corrosion inhibitors is a widely accepted strategy to…

Abstract

Purpose

Corrosion is a major concern for many industries that use metals as structural or functional materials, and the use of corrosion inhibitors is a widely accepted strategy to protect metals from deterioration in corrosive environments. Moreover, the toxic nature, non-biodegradability and price of most conventional corrosion inhibitors have encouraged the application of greener and more sustainable options, with natural and synthetic drugs being major actors. Hence, this paper aims to stress the capability of natural and synthetic drugs as manageable and sustainable, environmentally friendly solutions to the problem of metal corrosion.

Design/methodology/approach

In this review, the recent developments in the use of natural and synthetic drugs as corrosion inhibitors are explored in detail to highlight the key advancements and drawbacks towards the advantageous utilization of drugs as corrosion inhibitors.

Findings

Corrosion is a critical issue in numerous modern applications, and conventional strategies of corrosion inhibition include the use of toxic and environmentally harmful chemicals. As greener alternatives, natural compounds like plant extracts, essential oils and biopolymers, as well as synthetic drugs, are highlighted in this review. In addition, the advantages and disadvantages of these compounds, as well as their effectiveness in preventing corrosion, are discussed in the review.

Originality/value

This survey stresses on the most recent abilities of natural and synthetic drugs as viable and sustainable, environmentally friendly solutions to the problem of metal corrosion, thus expanding the general knowledge of green corrosion inhibitors.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 24