Search results

1 – 10 of over 2000
Article
Publication date: 2 May 2017

El Amjed Hajlaoui

The purpose of this paper is to present a new dual-band printed monopole antenna with a partial ground with two notched bands based on electromagnetic band gap (EBG) structures. A…

Abstract

Purpose

The purpose of this paper is to present a new dual-band printed monopole antenna with a partial ground with two notched bands based on electromagnetic band gap (EBG) structures. A new type of EBG antenna with radiation patterns and antenna gains over the operating bands has been developed.

Design/methodology/approach

The proposed antenna consists of a pair of EBG structures using a transmission line model. The proposed antenna is designed on an FR4 substrate with a thickness of 1 mm and permittivity (er) = 4.3.

Findings

The measured results show good dual-band operations with −10 dB impedance bandwidths of 9.1 and 36.2 per cent centered at 2.45 and 6.364 GHz, respectively, which covers the wireless local area network (WLAN) operating bands.

Originality/value

A new type of EBG antenna with radiation patterns and antenna gains over the operating bands has been developed.

Details

Circuit World, vol. 43 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 6 February 2020

Suresh Akkole and Vasudevan N.

Application of electromagnetic band gap (EBG) i.e. electromagnetic band gap technique and its use in the design of microstrip antenna and MIC i.e. microwave integrated circuits is…

Abstract

Purpose

Application of electromagnetic band gap (EBG) i.e. electromagnetic band gap technique and its use in the design of microstrip antenna and MIC i.e. microwave integrated circuits is becoming more attractive. This paper aims to propose a new type of EBG fractal square patch microstrip multi band fractal antenna structures that are designed and developed. Their performance parameters with and without EBG structures are investigated and minutely compared with respect to the resonance frequency, return loss, a gain of the antenna and voltage standing wave ratio.

Design/methodology/approach

The fractal antenna geometries are designed from the fundamental square patch and then EBG structures are introduced. The antenna geometry is optimized using IE3D simulation tool and fabricated on low cost glass epoxy FR4, with 1.6 mm height and dielectric materials constant of 4.4. The prototype is examined by means of the vector network analyzer and antenna patterns are tested on the anechoic chamber.

Findings

Combining the square fractal patch antenna with an application of EBG techniques, the gain of microstrip antenna has been risen up and attained good return loss as compared to the antennas without EBG structures. The designs exhibit multi-frequency band characteristics extending in between 1.70 and 7.40 GHz. Also, a decrease in antenna size of 34.84 and 59.02 per cent for the first and second iteration, respectively, is achieved for the antenna second and third without EBG. The experimental results agree with that of simulated values. The presented microstrip antenna finds uses in industrial, scientific and medical (ISM) band, Wi-Fi and C band. This antenna can also be used for satellite and radio detection and range devices for communication purposes.

Originality/value

A new type of EBG fractal square patch microstrip antenna structures are designed, developed and compared with and without EBG. Because of the application of EBG techniques, the gain of microstrip antenna has been risen up and attained good return loss as compared to the antennas without EBG structures. The designs exhibit multi-frequency band characteristics extending in between 1.70 and 7.40 GHz, which are useful for Wi-Fi, ISM and C band wireless communication.

Details

International Journal of Pervasive Computing and Communications, vol. 17 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 24 January 2019

Vivek Singh, Brijesh Mishra and Rajeev Singh

Purpose of this study is to design a compact gap coupled anchor shape patch antenna for wireless local area network/high performance radio local area network and worldwide…

Abstract

Purpose

Purpose of this study is to design a compact gap coupled anchor shape patch antenna for wireless local area network/high performance radio local area network and worldwide interoperability for microwave access applications.

Design/methodology/approach

An anchor shape microstrip antenna is conceived, designed, simulated and measured. The anchor shape antenna is transformed to its rectangular equivalent by conserving the patch area. Modeling and simulation of the antenna is performed by Ansys high frequency structure simulator (HFSS) electromagnetic solver based on the concept of finite element method. The simulated results are experimentally verified by using Agilent E5071C vector network analyzer. Theoretical analysis of an electromagnetically gap coupled anchor shape microstrip patch antenna has been performed by obtaining the lumped element equivalent of the transformed antenna.

Findings

The proposed antenna has a compact conducting patch of dimension 0.26λ × 0.12λ mm2 (λ is calculated at lower resonating frequency of 3.56 GHz) with impedance bandwidths of 100 and 140 MHz and antenna gains of 1.91 and 3.04 dB at lower resonating frequency of 3.56 GHz and upper resonating frequency of 5.4 GHz, with omni-directional radiation pattern.

Originality/value

In literature, one does not encounter anchor shape antenna using the concept of gap coupling and parasitic patches. The design has been optimized for wireless local area network/worldwide interoperability for microwave access applications with a relatively low patch area (291.12 mm2) as compared to other reported antennas for wireless local area network/worldwide interoperability for microwave access applications. Transformed antenna and the actual experimental antenna behavior varies, but the resonant frequencies of the transformed antenna as observed by theoretical analysis and simulated results (by high frequency structure simulator) are reasonably close, and the percentage difference between the resonant frequencies (both at lower and upper bands) is within the permissible limit of 1-2.5 per cent. Results confirm the theoretical proposition of transformation of shapes in antenna design, which allows a designer to adapt the design shape according to the application.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 July 2021

Khader Zelani Shaik, Siddaiah P. and K. Satya Prasad

Millimeter wave spectrum represents new opportunities to add capacity and faster speeds for next-generation services as fifth generation (5G) applications. In its Spectrum…

Abstract

Purpose

Millimeter wave spectrum represents new opportunities to add capacity and faster speeds for next-generation services as fifth generation (5G) applications. In its Spectrum Frontiers proceeding, the Federal Communications Commision decided to focus on spectrum bands where the most spectrums are potentially available. A low profile antenna array with new decoupling structure is proposed and expected to resonate at higher frequency bands, i.e. millimeter wave frequencies, which are suitable for 5G applications.

Design/methodology/approach

The presented antenna contains artificial magnetic conductor (AMC) surface as decoupling structure. The proposed antenna array with novel AMC surface is operating at 29.1GHz and proven to be decoupling structure and capable of enhancing the isolation by reducing mutual coupling as 8.7dB between the array elements. It is evident that, and overall gain is improved as 10.1% by incorporating 1x2 Array with AMC Method. Mutual coupling between the elements of 1 × 2 antenna array is decreased by 39.12%.

Findings

The proposed structure is designed and simulated using HFSS software and the results are obtained in terms of return loss, gain, voltage standing wave ratio (VSWR) and mutual coupling. The S-Parameters of each stage of design is tabulated and compared with each other to prove the decoupling capability of AMC surface in antenna arrays.

Originality/value

The proposed structure is designed and simulated using HFSS software, and the results are obtained in terms of return loss, gain, VSWR and mutual coupling. The S-Parameters of each stage of design is tabulated and compared with each other to prove the decoupling capability of AMC surface in antenna arrays.

Details

Circuit World, vol. 47 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 13 June 2016

Slawomir Koziel and Adrian Bekasiewicz

– The purpose of this paper is to investigate strategies and algorithms for expedited design optimization and explicit size reduction of compact ultra-wideband (UWB) antennas.

Abstract

Purpose

The purpose of this paper is to investigate strategies and algorithms for expedited design optimization and explicit size reduction of compact ultra-wideband (UWB) antennas.

Design/methodology/approach

Formulation of the compact antenna design problem aiming at explicit size reduction while maintaining acceptable electrical performance is presented. Algorithmic frameworks are described suitable for handling various design situations and involving simulation models without and with response gradients available. Numerical and experimental case studies are provided demonstrating feasibility of solving real-world miniaturized antenna design tasks.

Findings

It is possible, through appropriate combination of the global and local optimization methods, surrogate modeling techniques and response correction methods, to find optimum dimensions of antenna structures that minimize antenna size while maintaining acceptable electrical performance. Design optimization can be performed at practically feasible computational costs.

Research limitations/implications

The study summarizes recent advances in miniaturization-oriented design optimization of UWB antennas. The presented techniques reach far beyond the commonly used design approaches based on parameter sweeps and similar hands-on methods, particularly in terms of automation, reliability, and reduction of the computational costs of the design processes.

Originality/value

The proposed design problem formulation and algorithmic frameworks proved useful for rapid design of compact UWB antenna structures, which is extremely challenging when using conventional methods. To the knowledge, this is the first attempt to efficient solving of this type of design problems, especially in the context of explicit antenna size reduction.

Article
Publication date: 25 February 2022

Khader Zelani Shaik, P. Siddaiah and K. Satya Prasad

Planar periodic metallic arrays behave as artificial magnetic conductor (AMC) surfaces when placed on a grounded dielectric substrate, and they introduce a zero-degree reflection…

Abstract

Purpose

Planar periodic metallic arrays behave as artificial magnetic conductor (AMC) surfaces when placed on a grounded dielectric substrate, and they introduce a zero-degree reflection phase shift to incident waves. The antenna designers have new challenges while designing the AMC structure. The steps followed in designing the structure are as follows: 1) Designing the antenna, aimed to operate at millimetric wave frequencies, (2) Designing the AMC at desired frequencies, (3) Integrating the antenna design and AMC to resonate at millimetric wave frequencies and (4) Validate the output parameters of the antenna to be suitable for Internet of Things (IoT) applications.

Design/methodology/approach

The antenna is integrated with artificial material known as high impedance surface (HIS) for performance enhancement. A miniaturized, multiband, enhanced gain, AMC-integrated CPW-fed antenna is proposed and aimed to operate at millimetric wave frequencies, which is most suitable for IoT applications. The developed antenna operates at an extremely high range (30–300 GHz), i.e. from 40 to 60 GHz with the return loss values at lesser than −20 dB, and gain is greater than 10. The antenna is developed and simulated by using HFSS software.

Findings

An extensive research study has been carried out to develop a low profile, high gain and optimized antenna. The first two steps are separately designing the antenna and the AMC unit cell at the desired frequencies. The third step is finding the antenna or AMC radiating parts responsible for each resonant frequency by analysing the surface current distribution. CPW fed along with AMC integration has made the antenna feasible to achieve the extremely high frequency (EHF) range, i.e. 40–60 GHz, which is highly adoptable in IoT applications.

Originality/value

The result represented that the developed antenna is resonating at EHF rank with high gain and good imped matching when it is being compared with the previous models and has only CPW fed without having AMC structure integration. It is evident that the antenna which has only CPW fed has resonated at lower frequency than EHF range and justified output characteristics. But when it is embedded with the AMC structure, it resonates at the EHF range, which makes the antenna highly suitable for IoT applications, with more accuracy and high data rate possibility.

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Open Access
Article
Publication date: 28 August 2021

Slawomir Koziel and Anna Pietrenko-Dabrowska

A novel framework for expedited antenna optimization with an iterative prediction-correction scheme is proposed. The methodology is comprehensively validated using three…

Abstract

Purpose

A novel framework for expedited antenna optimization with an iterative prediction-correction scheme is proposed. The methodology is comprehensively validated using three real-world antenna structures: narrow-band, dual-band and wideband, optimized under various design scenarios.

Design/methodology/approach

The keystone of the proposed approach is to reuse designs pre-optimized for various sets of performance specifications and to encode them into metamodels that render good initial designs, as well as an initial estimate of the antenna response sensitivities. Subsequent design refinement is realized using an iterative prediction-correction loop accommodating the discrepancies between the actual and target design specifications.

Findings

The presented framework is capable of yielding optimized antenna designs at the cost of just a few full-wave electromagnetic simulations. The practical importance of the iterative correction procedure has been corroborated by benchmarking against gradient-only refinement. It has been found that the incorporation of problem-specific knowledge into the optimization framework greatly facilitates parameter adjustment and improves its reliability.

Research limitations/implications

The proposed approach can be a viable tool for antenna optimization whenever a certain number of previously obtained designs are available or the designer finds the initial effort of their gathering justifiable by intended re-use of the procedure. The future work will incorporate response features technology for improving the accuracy of the initial approximation of antenna response sensitivities.

Originality/value

The proposed optimization framework has been proved to be a viable tool for cost-efficient and reliable antenna optimization. To the knowledge, this approach to antenna optimization goes beyond the capabilities of available methods, especially in terms of efficient utilization of the existing knowledge, thus enabling reliable parameter tuning over broad ranges of both operating conditions and material parameters of the structure of interest.

Details

Engineering Computations, vol. 38 no. 10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 June 2016

Slawomir Koziel and Adrian Bekasiewicz

– The purpose of this paper is to validate methodologies for expedited multi-objective design optimization of complex antenna structures both numerically and experimentally.

Abstract

Purpose

The purpose of this paper is to validate methodologies for expedited multi-objective design optimization of complex antenna structures both numerically and experimentally.

Design/methodology/approach

The task of identifying the best possible trade-offs between the antenna size and its electrical performance is formulated as multi-objective optimization problem. Algorithmic frameworks are described for finding Pareto-optimal designs using auxiliary surrogate models and two alternative approaches to design refinement: response correction techniques and co-kriging. Numerical and experimental case studies are provided to demonstrate feasibility of solving real-world and complex antenna design tasks.

Findings

It is possible, through appropriate combination of the surrogate modeling techniques (both data driven and physics based) and response correction methods, to find the set of alternative designs representing the best possible trade-offs between conflicting design objectives, here, electrical performance and size. Design optimization can be performed at practically feasible computational costs.

Research limitations/implications

The study demonstrates feasibility of automated multi-objective design optimization of antennas at low computational cost. The presented techniques reach beyond the commonly used design approaches based on parameter sweeps and similar hands-on methods, particularly in terms of automation, reliability and reduction of the computational costs of the design processes.

Originality/value

Multi-objective design of antenna structures is very challenging when high-fidelity electromagnetic simulations are utilized for performance evaluation of the structure at hand. The proposed design framework permits rapid optimization of complex structures (here, MIMO antenna), which is hardly possible using conventional methods.

Details

Engineering Computations, vol. 33 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 October 2016

Fei Zheng, Jie He and Pan Zhang

The purpose of this paper is to build a new deployable antenna with folded scissors ribs and to evaluate the reasonable characteristics of this new structure.

Abstract

Purpose

The purpose of this paper is to build a new deployable antenna with folded scissors ribs and to evaluate the reasonable characteristics of this new structure.

Design/methodology/approach

Based on the TerrStar-1 satellite, virtual design and shapes forming are considered in this paper with the structure design of the new antenna. Considering the relaxation units in net surface, form-finding evaluation is used to build mathematical model and operate the optimization algorithm so that the design of the new antenna with folded scissors ribs is achieved. Simulations are carried out to verify the antenna proposed.

Findings

It is found that the antenna with folded scissors ribs can be developed smoothly in the space.

Practical implications

The proposed the antenna with folded scissors ribs can be considered as a fall-back alternative for large antenna, with a diameter of over 10 m in the space, or is seen as another option for the system with a simple rigid structure.

Originality/value

Different from traditional antenna, it provides a valuable reference for the further research of large deployable antenna in space. The antenna in this paper is able to develop more than 30 m of diameter. Meanwhile, the surface density and the natural frequency and the root-mean-square error in surface are superior to those of the traditional antenna.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 September 2019

Slawomir Koziel and Anna Pietrenko-Dabrowska

A technique for accelerated design optimization of antenna input characteristics is developed and comprehensively validated using real-world wideband antenna structures

Abstract

Purpose

A technique for accelerated design optimization of antenna input characteristics is developed and comprehensively validated using real-world wideband antenna structures. Comparative study using a conventional trust-region algorithm is provided. Investigations of the effects of the algorithm control parameters are also carried out.

Design/methodology/approach

An optimization methodology is introduced that replaces finite differentiation (FD) by a combination of FD and selectively used Broyden updating formula for antenna response Jacobian estimations. The updating formula is used for directions that are sufficiently well aligned with the design relocation that occurred in the most recent algorithm iteration. This allows for a significant reduction of the number of full-wave electromagnetic simulations necessary for the algorithm to converge; hence, it leads to the reduction of the overall design cost.

Findings

Incorporation of the updating formulas into the Jacobian estimation process in a selective manner considerably reduces the computational cost of the optimization process without compromising the design quality. The algorithm proposed in the study can be used to speed up direct optimization of the antenna structures as well as surrogate-assisted procedures involving variable-fidelity models.

Research limitations/implications

This study sets a direction for further studies on accelerating procedures for the local optimization of antenna structures. Further investigations on the effects of the control parameters on the algorithm performance are necessary along with the development of means to automate the algorithm setup for a particular antenna structure, especially from the point of view of the search space dimensionality.

Originality/value

The proposed algorithm proved useful for a reduced-cost optimization of antennas and has been demonstrated to outperform conventional algorithms. To the authors’ knowledge, this is one of the first attempts to address the problem in this manner. In particular, it goes beyond traditional approaches, especially by combining various sensitivity estimation update measures in an adaptive fashion.

1 – 10 of over 2000