Search results

1 – 10 of 417
Article
Publication date: 25 October 2019

Melvin C. Jose, Radha Sankararajan, Sreeja B.S. and Pratap Kumar

This paper aims to propose a laser micro-machined 4 × 4 elements microstrip array antenna suitable for 5 G millimeter wave (mm-wave) applications. Each patch element of the array…

Abstract

Purpose

This paper aims to propose a laser micro-machined 4 × 4 elements microstrip array antenna suitable for 5 G millimeter wave (mm-wave) applications. Each patch element of the array is excited with same amplitude and phase that is achieved with proper novel impedance matching stub. The proposed antenna achieves a simulated gain of 13.15 dBi and a measured return loss of −24.80 dB at 28.73 GHz with a total bandwidth of 7.48 GHz. The designed antenna is directional with a directivity of 15.1 dBi at 28.73 GHz, whereas fabricated on a low cost FR4 substrate with a substrate thickness of 0.074 λ mm. The antenna is realized with an aperture size of 2.24λ × 3.26λ.

Design/methodology/approach

The antenna structure starts from the design of single element called unit cell. The single element is designed using the transmission line model equations of a rectangular patch. To design a 28 GHz microstrip patch antenna, a dielectric material with lower permittivity and having thickness (h) less than 1 mm is required. This specification gives better gain and efficiency by reducing surface waves and mutual coupling between elements. The inset width is optimized to achieve the minimum reflection coefficient (S11). The single element has been arranged with a minimum spacing of λ/2 (5.3571 mm) in an H plane and E plane. It is connected using the microstrip lines with proper impedance matching. The four 2 × 2-sub array cell subsystems are connected with a corporate feed together formed the 4 × 4-array cell. Rectangular planar array method is used to arrange the elements in the 4 × 4 array cell.

Findings

The design concept is simple which includes the combination of corporate feed and insect feed. It is compact in size and easy to fabricate. The bandwidth of fabricated prototype antenna array is achieved as 7.48 GHz from 24.98 GHz to 32.46 GHz. The mutual coupling is very less though the antenna array is placed with minimum spacing between adjacent elements. This is because of the microstrip feeding structure with minimum phase shift. The gain can be further enhanced with increasing number of array element and proper designing of feed line. Owing to the advantages of low profile, wide bandwidth and high gain, the designed array will be potentially useful in 5 G wireless communications.

Originality/value

The measured antenna offers bandwidth 7.48 GHz (24.98 GHz-32.46 GHz) with centered frequency 28.73 GHz. The agreement between simulated and measured results is good. The VSWR is observed 0.32 < 2, offers good impedance matching and low mutual coupling. It gives better E-Field and H-field radiation patterns of the 4 × 4 array antenna structure at 28 GHz. The total gain of 13.14 dBi is achieved at the center frequency. The total efficiency of 63.42 per cent is achieved with FR4 substrate.

Details

Circuit World, vol. 46 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 17 March 2014

J. Virtanen, F. Yang, L. Ukkonen, A.Z. Elsherbeni, A.A. Babar and L. Sydänheimo

The purpose of this paper is to develop a novel totally passive, wireless temperature sensor tag based on ultra high-frequency (UHF) radio frequency identification (RFID…

Abstract

Purpose

The purpose of this paper is to develop a novel totally passive, wireless temperature sensor tag based on ultra high-frequency (UHF) radio frequency identification (RFID) technology. The temperature-sensing functionality is enabled by using distilled water embedded in the tag antenna substrate. The novel sensor tag is designed to provide wireless temperature readings comparable to a commercial thermocouple thermometer even in environments with high levels of interference, such as reflections. The structure of the novel sensor tag is aimed to increase its usability by minimizing user-created errors and to simplify the measurement procedure.

Design/methodology/approach

The sensor tag is based on a dual port sensing concept in which two ports are used to obtain sensor readings. By utilizing two ports instead of one, the effects of environmental interference, tag-reader antenna orientation and distance can be effectively minimized. Two alternative methods of acquiring the sensor reading from the operating characteristics of the two ports are presented and discussed.

Findings

Temperature measurements in practical scenarios show that by utilizing the dual port sensing concept, the developed tag produces temperature readings wirelessly which are comparable to readings from a commercial thermocouple thermometer.

Research limitations/implications

The concept of dual port sensing was shown and two alternative methods on extracting sensor readings from the differences in the port operating characteristics were introduced and discussed. In this paper, the dual port sensing concept is utilized in creating a temperature sensor tag; however, the same concept can be utilized in a variety of passive wireless sensors based on UHF RFID technology. This enables a new approach in designing accurate, easy to use and easily integrable passive sensors. The dual port sensing concept is in its early stages of development; its accuracy could be improved by developing more advanced data post-processing techniques.

Practical implications

The accuracy of a passive dual port UHF RFID-enabled temperature sensor tag is proven to be sufficient in many applications. This indicates that other sensor types utilizing the dual port sensing concept can reach high levels of accuracy as well. Furthermore, the passive RFID-enabled sensors based on the dual port sensing concept are superior in usability versus sensor tags equipped only with a single port. Therefore, dual port sensing concept in passive UHF RFID-enabled sensor tags could make such sensors more attractive commercially and lead to truly widespread ubiquitous sensing and computing.

Originality/value

This paper presents a novel passive, wireless temperature sensor tag for UHF RFID systems. The sensor tag utilizes a new structure which allows tight integration of two ports and two tag antennas. The accuracy of the developed tag is confirmed throughout measurements and it is found comparable to the accuracy of commercial thermometers in practical measurement scenarios. Moreover, the paper presents a dual port sensing concept and two readout methods based on the concept which are aimed to increase the accuracy and usability of all kinds of UHF RFID-enabled sensor tags.

Details

Sensor Review, vol. 34 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 24 January 2019

Vivek Singh, Brijesh Mishra and Rajeev Singh

Purpose of this study is to design a compact gap coupled anchor shape patch antenna for wireless local area network/high performance radio local area network and worldwide…

Abstract

Purpose

Purpose of this study is to design a compact gap coupled anchor shape patch antenna for wireless local area network/high performance radio local area network and worldwide interoperability for microwave access applications.

Design/methodology/approach

An anchor shape microstrip antenna is conceived, designed, simulated and measured. The anchor shape antenna is transformed to its rectangular equivalent by conserving the patch area. Modeling and simulation of the antenna is performed by Ansys high frequency structure simulator (HFSS) electromagnetic solver based on the concept of finite element method. The simulated results are experimentally verified by using Agilent E5071C vector network analyzer. Theoretical analysis of an electromagnetically gap coupled anchor shape microstrip patch antenna has been performed by obtaining the lumped element equivalent of the transformed antenna.

Findings

The proposed antenna has a compact conducting patch of dimension 0.26λ × 0.12λ mm2 (λ is calculated at lower resonating frequency of 3.56 GHz) with impedance bandwidths of 100 and 140 MHz and antenna gains of 1.91 and 3.04 dB at lower resonating frequency of 3.56 GHz and upper resonating frequency of 5.4 GHz, with omni-directional radiation pattern.

Originality/value

In literature, one does not encounter anchor shape antenna using the concept of gap coupling and parasitic patches. The design has been optimized for wireless local area network/worldwide interoperability for microwave access applications with a relatively low patch area (291.12 mm2) as compared to other reported antennas for wireless local area network/worldwide interoperability for microwave access applications. Transformed antenna and the actual experimental antenna behavior varies, but the resonant frequencies of the transformed antenna as observed by theoretical analysis and simulated results (by high frequency structure simulator) are reasonably close, and the percentage difference between the resonant frequencies (both at lower and upper bands) is within the permissible limit of 1-2.5 per cent. Results confirm the theoretical proposition of transformation of shapes in antenna design, which allows a designer to adapt the design shape according to the application.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 August 2017

Partibane B., Gulam Nabi Alsath M. and Kalidoss Rajakani

This paper aims to presents the bandwidth enhancement of a hybrid slotloop antenna using a modified feed structure.

Abstract

Purpose

This paper aims to presents the bandwidth enhancement of a hybrid slotloop antenna using a modified feed structure.

Design/methodology/approach

The conventional monopole feed of the hybrid slotloop radiator is loaded with a flat microstrip patch to excite higher-order modes. The proposed antenna combines the resonant modes of the slot antenna, the loop antenna and the patch loading.

Findings

The antenna exhibits a dual-band response suitable for GSM 1800/1900 and ultrawideband (UWB) standards. The impedance bandwidth extends from 1.65 to 1.95 GHz (11.42 per cent) and 3 to 11.1 GHz (114.9 per cent). The proposed antenna has the smallest footprint with a peak gain of 5.07 dBi at 1.8 GHz and 4.97 dBi at 6 GHz. The prototype antenna is fabricated and the simulation results are validated using experimental measurements. The performance of the bandwidth-enhanced hybrid slotloop antenna is compared with that of other slot antennas.

Originality/value

Thus, a hybrid slotloop antenna with an enhanced bandwidth has been reported in this study. The conventional monopole feed of the antenna is replaced with a monopole ending with a microstrip patch load. The antenna covers the operating bands of GSM 1800/1900 and UWB. The proposed antenna has a smaller footprint compared with other wide-slot antennas reported in the literature.

Details

Circuit World, vol. 43 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 9 November 2012

Ademola O. Kaka, Mehmet Toycan, Vali Bashiry and Stuart D. Walker

The purpose of this paper is to describe a modified Hilbert‐based fractal antenna for ultra wideband (UWB) wireless applications. Simulation results show excellent multi‐band…

Abstract

Purpose

The purpose of this paper is to describe a modified Hilbert‐based fractal antenna for ultra wideband (UWB) wireless applications. Simulation results show excellent multi‐band characteristics for UWB wireless applications.

Design/methodology/approach

A Hilbert curve‐based fractal is optimised for self‐replicating, space‐filling and self‐avoiding properties. In the proposed design, the Hilbert curve is applied to a rectangle as an initial iteration and maintained for the later iterations. Additionally, a Yagi‐like strip is removed from the second iteration of the Hilbert patch and a hexagonal portion is removed from the substrate to achieve good optimization. The antenna feed is created through a micro‐strip line with a feeding section. Finally, a partial ground plane technique is used for improved impedance matching characteristics. A finite element method (FEM) is used to simulate the modified Hilbert model with commercially available Ansoft HFSS software.

Findings

The proposed antenna is miniaturized (39 mm length×30 mm width) and has multi‐band characteristics. The simulation results show that the antenna has a reflection coefficient characteristic of <−10 dB, a linear phase reflection coefficient, better than 65 percent radiation efficiency, 2.2‐4 dBi antenna gain and nearly omni‐directional radiation pattern properties over the UWB bandwidth (3.1‐10.6 GHz).

Originality/value

The antenna shows promising characteristics for the full 7.5 GHz UWB bandwidth. In addition, the performance is achieved by using laceration techniques on the Hilbert patch and substrate, respectively. A partial ground plane ensures impedance matching of 50 over full UWB bandwidth. The simulation analysis of the modified Hilbert fractal antenna design constitutes the main contribution of the paper.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 21 August 2018

Polyanna Mara Pereira, Felipe Campelo, Takuya Mori, Hajime Igarashi and Ricardo Adriano

This paper aims to present a SPICE model to represent antennas in receiving mode. The model can be used to evaluate the performance of the antenna when it is coupled to several…

Abstract

Purpose

This paper aims to present a SPICE model to represent antennas in receiving mode. The model can be used to evaluate the performance of the antenna when it is coupled to several different nonlinear electric circuits. The proposed methodology is particularly suitable for rectenna applications, as it allows the analysis of different configurations for a rectenna more efficiently than using full-wave analysis simulators coupled directly to each rectifier circuit.

Design/methodology/approach

The model presented uses reciprocity theory to calculate the ideal voltage source of the Thevenin-equivalent circuit for an antenna. Vector fitting is then used to approximate the model to rational functions that can be converted to Resistor, Inductor and Capacitor circuits. Additional components are added to the circuit to prevent numerical instability.

Findings

Two rectennas are used to illustrate the performance of the proposed model, one based on a 2.45-GHz rectangular patch antenna and another based on a planar spiral antenna. The second antenna has impedance with positive and negative real parts along the frequency range, which could lead to numerical instabilities. The proposed method is shown to be stable while working with these negative resistance values, which may appear during circuit parameterization.

Research limitations/implications

The equivalent SPICE circuit model for the antenna makes it easy to simulate nonlinear circuits connected to the antenna and perform transient analyses. The computational cost of antenna analysis is reduced, being more computationally efficient than methods that involve full-wave simulation. This characteristic makes it an interesting approach for working with rectennas, or any application where the time constant of the circuit is much longer than the period of the incident wave.

Originality/value

For most antenna applications, the numerical stability of the circuit can be achieved using passive enforcement. However, depending on the phase response of the antenna, the impedance that represents its far-field characteristic may present a negative real part, in which case, passive enforcement will fail. In this paper, the problem of numerical instability is solved by introducing an offset resistance and a current-controlled voltage source to the model.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 21 August 2018

Lukasz Januszkiewicz, Paolo Di Barba and Slawomir Hausman

The purpose of this study is to develop a method to reduce the computation time necessary for the automated optimal design of dual-band wearable antennas. In particular, the…

Abstract

Purpose

The purpose of this study is to develop a method to reduce the computation time necessary for the automated optimal design of dual-band wearable antennas. In particular, the authors investigated if this can be achieved by the use of a hierarchical optimization paradigm combined with a simplified human body model. The geometry of the antenna under consideration is described via eight geometrical parameters which are automatically adjusted with the use of an evolutionary algorithm to improve the impedance matching of an antenna located in the proximity of a human body. Specifically, the antennas were designed to operate in the ISM band which covers two frequency ranges: 2.4-2.5 GHz and 5.7-5.9 GHz.

Design/methodology/approach

During the studies on the automated design of wearable antennas using evolutionary computing, the authors observed that not all design parameters exhibit equal influence on the objective function. Therefore, it was hypothesized that to reduce the computation effort, the design parameters can be activated sequentially based on their influence. Accordingly, the authors’ computer code has been modified to include this feature.

Findings

The authors’ novel hierarchical multi-parameter optimization method was able to converge to a better solution within a shorter time compared to an equivalent method not exploiting automatic activation of an increasing number of design parameters. Considering a significant computational cost involved in the calculation of the objective function, this exhibits a convincing advantage of their hierarchical approach, at least for the considered class of antennas.

Research limitations/implications

The described method has been developed for the design of single- or dual-band wearable antennas. Its application to other classes of antennas and antenna environments may require some adjustments of the objective functions or parameter values of the evolutionary algorithm. It follows from the well-recognized fact that all optimization methods are to some extent application-specific.

Practical implications

Computation load involved in the automated design and optimization can be significantly reduced compared to the non-hierarchical approach with a heterogeneous human body model.

Originality/value

To the best of the authors’ knowledge, the described application of hierarchical paradigm to the optimization of wearable antennas is fully original, as well as is its combination with simplified body models.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 May 2010

S. Patil and Vijaya Puri

The purpose of this paper is to report the effect of bismuth oxide thick films of various thicknesses on the X band (8‐12 GHz) response of Ag thick film microstrip rectangular…

Abstract

Purpose

The purpose of this paper is to report the effect of bismuth oxide thick films of various thicknesses on the X band (8‐12 GHz) response of Ag thick film microstrip rectangular patch antenna.

Design/methodology/approach

The effect of bismuth oxide thick film overlay of different thickness on Ag thick film microstrip rectangular patch antenna was investigated in the X band (8‐12 GHz). The change in the resonance frequency, amplitude, band width, quality factor, and input impedance of the antenna were studied. Using the resonance frequency the permittivity and conductivity of bismuth oxide thick film was measured.

Findings

Thickness of Bi2O3 thick film overlay dependent changes in the patch antenna characteristics is obtained. The resonance frequency shifts to higher frequency end due to overlay. The input impedance decreases due to the overlay. The dielectric constant of bismuth oxide thick film calculated from shift in resonance frequency shows thickness dependent values.

Originality/value

The microwave permittivity and conductivity of Bi2O3 thick film have been reported for the first time using overlay on thick film patch antenna. Thickness of overlay dependent tuning of the antenna has been achieved.

Details

Microelectronics International, vol. 27 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 4 January 2008

Ralf T. Jacobs, Arnulf Kost, Hajime Igarashi and Alan J. Sangster

The purpose of this paper is the analysis of the radiation and impedance characteristics of cavity backed patch antennas embedded in a curved surface. Single patch elements and…

Abstract

Purpose

The purpose of this paper is the analysis of the radiation and impedance characteristics of cavity backed patch antennas embedded in a curved surface. Single patch elements and small scale array antennas are considered. The impact of curvature on the performance of the patch antenna is investigated, and the effect of mutual coupling between the elements in an array is examined.

Design/methodology/approach

A finite element‐boundary integral procedure has been implemented to accurately determine the performance characteristics of the patch radiators on planar and cylindrical surfaces. Simulated results will be shown to be in good agreement with measurements.

Findings

Mutual coupling effects between array elements are examined and it can be observed that an active element primarily interacts with the nearest neighbour elements. A comparison of an array element with a single patch radiator shows that the mutual coupling effects cause no significant mismatch between a patch and a feed network in practical applications.

Originality/value

The characteristics of conformal microstrip antennas are investigated for single patch radiators and patch elements in array environments. Simulations are supported by measurements.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 July 2015

Ademola O. Kaka, Mehmet Toycan and Stuart D. Walker

A vertically stacked, three layer hybrid Hilbert fractal geometry and serpentine radiator-based patch antenna is proposed and characterized for medical implant applications at the…

Abstract

Purpose

A vertically stacked, three layer hybrid Hilbert fractal geometry and serpentine radiator-based patch antenna is proposed and characterized for medical implant applications at the Industrial, Scientific and Medical band (2.4-2.48 GHz). Antenna parameters are optimised to achieve miniaturized, biocompatible and stable transmission characteristics. The paper aims to discuss these issues.

Design/methodology/approach

Human tissue effects on the antenna electrical characteristics were simulated with a three-layer (skin, fat and muscle) human tissue model with the dimensions of 180×70×60 mm3 (width×height×thickness mm3). Different stacked substrates are utilized for the satisfactory characteristics. Two identical radiating patches are printed on Roger 3,010 (ε r=10.2) and Alumina (ε r=9.4) substrate materials, respectively. In addition, various superstrate materials are considered and simulated to prevent short circuit the antenna while having a direct contact with the metallization, and achieve biocompatibility. Finally, superstrate material of Zirconia (ε r=29) is used to achieve biocompatibility and long-life. A finite element method is used to simulate the proposed hybrid model with commercially available Ansoft HFSS software.

Findings

The antenna is miniaturized, having dimensions of 10×8.4×2 mm3 (width×height×thickness mm3). The resonance frequency of the antenna is 2.4 GHz with a bandwidth of 100 MHz at return loss (S11) of better than −10 dB characteristics. Overall, the proposed antenna have 50 Ω impedance matching, −21 dB far field antenna gain, single-plane omni-directional radiation pattern properties and incident power of 5.3 mW to adhere Specific Absorption Rate regulation limit.

Originality/value

Vertically stacked three layer hybrid design have miniaturized characteristics, wide bandwidth, biocompatible, and stable characteristics in three layer human tissue model make this antenna suitable for implant biomedical monitor systems. The advanced simulation analysis of the proposed design constitutes the main contribution of the paper.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 417