Search results

1 – 10 of 107
Article
Publication date: 12 December 2023

Jian Zhou, Shuyu Liu, Jian Lu and Xinyu Liu

The purpose of this paper is to introduce an improved system identification method for small unmanned helicopters combining adaptive ant colony optimization algorithm and Levy’s…

Abstract

Purpose

The purpose of this paper is to introduce an improved system identification method for small unmanned helicopters combining adaptive ant colony optimization algorithm and Levy’s method and to solve the problem of low model prediction accuracy caused by low-frequency domain curve fitting in the small unmanned helicopter frequency domain parameter identification method.

Design/methodology/approach

This method uses the Levy method to obtain the initial parameters of the fitting model, uses the global optimization characteristics of the adaptive ant colony algorithm and the advantages of avoiding the “premature” phenomenon to optimize the initial parameters and finally obtains a small unmanned helicopter through computational optimization Kinetic models under lateral channel and longitudinal channel.

Findings

The algorithm is verified by flight test data. The verification results show that the established dynamic model has high identification accuracy and can accurately reflect the dynamic characteristics of small unmanned helicopter flight.

Originality/value

This paper presents a novel and improved frequency domain identification method for small unmanned helicopters. Compared with the conventional method, this method improves the identification accuracy and reduces the identification error.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Book part
Publication date: 18 January 2024

Ackmez Mudhoo, Gaurav Sharma, Khim Hoong Chu and Mika Sillanpää

Adsorption parameters (e.g. Langmuir constant, mass transfer coefficient and Thomas rate constant) are involved in the design of aqueous-media adsorption treatment units. However…

Abstract

Adsorption parameters (e.g. Langmuir constant, mass transfer coefficient and Thomas rate constant) are involved in the design of aqueous-media adsorption treatment units. However, the classic approach to estimating such parameters is perceived to be imprecise. Herein, the essential features and performances of the ant colony, bee colony and elephant herd optimisation approaches are introduced to the experimental chemist and chemical engineer engaged in adsorption research for aqueous systems. Key research and development directions, believed to harness these algorithms for real-scale water treatment (which falls within the wide-ranging coverage of the Sustainable Development Goal 6 (SDG 6) ‘Clean Water and Sanitation for All’), are also proposed. The ant colony, bee colony and elephant herd optimisations have higher precision and accuracy, and are particularly efficient in finding the global optimum solution. It is hoped that the discussions can stimulate both the experimental chemist and chemical engineer to delineate the progress achieved so far and collaborate further to devise strategies for integrating these intelligent optimisations in the design and operation of real multicomponent multi-complexity adsorption systems for water purification.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 18 August 2022

Hany Osman and Soumaya Yacout

In this paper, a data mining approach is proposed for monitoring the conditions leading to a rail wheel high impact load. The proposed approach incorporates logical analysis of…

Abstract

Purpose

In this paper, a data mining approach is proposed for monitoring the conditions leading to a rail wheel high impact load. The proposed approach incorporates logical analysis of data (LAD) and ant colony optimization (ACO) algorithms in extracting patterns of high impact loads and normal loads from historical railway records. In addition, the patterns are employed in establishing a classification model used for classifying unseen observations. A case study representing real-world impact load data is presented to illustrate the impact of the proposed approach in improving railway services.

Design/methodology/approach

Application of artificial intelligence and machine learning approaches becomes an essential tool in improving the performance of railway transportation systems. By using these approaches, the knowledge extracted from historical data can be employed in railway assets monitoring to maintain the assets in a reliable state and to improve the service provided by the railway network.

Findings

Results achieved by the proposed approach provide a prognostic system used for monitoring the conditions surrounding rail wheels. Incorporating this prognostic system in surveilling the rail wheels indeed results in better railway services as trips with no-delay or no-failure can be realized. A comparative study is conducted to evaluate the performance of the proposed approach versus other classification algorithms. In addition to the highly interpretable results obtained by the generated patterns, the comparative study demonstrates that the proposed approach provides classification accuracy higher than other common machine learning classification algorithms.

Originality/value

The methodology followed in this research employs ACO algorithm as an artificial intelligent technique and LDA as a machine learning algorithm in analyzing wheel impact load alarm-collected datasets. This new methodology provided a promising classification model to predict future alarm and a prognostic system to guide the system while avoiding this alarm.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 7 December 2021

Jiuhong Yu, Mengfei Wang, Yu J.H. and Seyedeh Maryam Arefzadeh

This paper aims to offer a hybrid genetic algorithm and the ant colony optimization (GA-ACO) algorithm for task mapping and resource management. The paper aims to reduce the…

Abstract

Purpose

This paper aims to offer a hybrid genetic algorithm and the ant colony optimization (GA-ACO) algorithm for task mapping and resource management. The paper aims to reduce the makespan and total response time in fog computing- medical cyber-physical system (FC-MCPS).

Design/methodology/approach

Swift progress in today’s medical technologies has resulted in a new kind of health-care tool and therapy techniques like the MCPS. The MCPS is a smart and reliable mechanism of entrenched clinical equipment applied to check and manage the patients’ physiological condition. However, the extensive-delay connections among cloud data centers and medical devices are so problematic. FC has been introduced to handle these problems. It includes a group of near-user edge tools named fog points that are collaborating until executing the processing tasks, such as running applications, reducing the utilization of a momentous bulk of data and distributing the messages. Task mapping is a challenging problem for managing fog-based MCPS. As mapping is an non-deterministic pol ynomial-time-hard optimization issue, this paper has proposed a procedure depending on the hybrid GA-ACO to solve this problem in FC-MCPS. ACO and GA, that is applied in their standard formulation and combined as hybrid meta-heuristics to solve the problem. As such ACO-GA is a hybrid meta-heuristic using ACO as the main approach and GA as the local search. GA-ACO is a memetic algorithm using GA as the main approach and ACO as local search.

Findings

MATLAB is used to simulate the proposed method and compare it to the ACO and MACO algorithms. The experimental results have validated the improvement in makespan, which makes the method a suitable one for use in medical and real-time systems.

Research limitations/implications

The proposed method can achieve task mapping in FC-MCPS by attaining high efficiency, which is very significant in practice.

Practical implications

The proposed approach can achieve the goal of task scheduling in FC-MCPS by attaining the highest total computational efficiency, which is very significant in practice.

Originality/value

This research proposes a GA-ACO algorithm to solve the task mapping in FC-MCPS. It is the most significant originality of the paper.

Details

Circuit World, vol. 49 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Open Access
Article
Publication date: 3 August 2020

Mostafa Abd-El-Barr, Kalim Qureshi and Bambang Sarif

Ant Colony Optimization and Particle Swarm Optimization represent two widely used Swarm Intelligence (SI) optimization techniques. Information processing using Multiple-Valued…

Abstract

Ant Colony Optimization and Particle Swarm Optimization represent two widely used Swarm Intelligence (SI) optimization techniques. Information processing using Multiple-Valued Logic (MVL) is carried out using more than two discrete logic levels. In this paper, we compare two the SI-based algorithms in synthesizing MVL functions. A benchmark consisting of 50,000 randomly generated 2-variable 4-valued functions is used for assessing the performance of the algorithms using the benchmark. Simulation results show that the PSO outperforms the ACO technique in terms of the average number of product terms (PTs) needed. We also compare the results obtained using both ACO-MVL and PSO-MVL with those obtained using Espresso-MV logic minimizer. It is shown that on average, both of the SI-based techniques produced better results compared to those produced by Espresso-MV. We show that the SI-based techniques outperform the conventional direct-cover (DC) techniques in terms of the average number of product terms required.

Article
Publication date: 31 July 2023

Anurag Tiwari and Priyabrata Mohapatra

The purpose of this study is to formulate a new class of vehicle routing problem with an objective to minimise the total cost of raw material collection and derive a new approach…

Abstract

Purpose

The purpose of this study is to formulate a new class of vehicle routing problem with an objective to minimise the total cost of raw material collection and derive a new approach to solve optimization problems. This study can help to select the optimum number of suppliers based on cost.

Design/methodology/approach

To model the raw material vehicle routing problem, a mixed integer linear programming (MILP) problem is formulated. An interesting phenomenon added to the proposed problem is that there is no compulsion to visit all suppliers. To guarantee the demand of semiconductor industry, all visited suppliers should reach a given raw material capacity requirement. To solve the proposed model, the authors developed a novel hybrid approach that is a combination of block and edge recombination approaches. To avoid bias, the authors compare the results of the proposed methodology with other known approaches, such as genetic algorithms (GAs) and ant colony optimisation (ACO).

Findings

The findings indicate that the proposed model can be useful in industries, where multiple suppliers are used. The proposed hybrid approach provides a better sequence of suppliers compared to other heuristic techniques.

Research limitations/implications

The data used in the proposed model is generated based on previous literature. The problem derives from the assumption that semiconductor industries use a variety of raw materials.

Practical implications

This study provides a new model and approach that can help practitioners and policymakers select suppliers based on their logistics costs.

Originality/value

This study provides two important contributions in the context of the supply chain. First, it provides a new variant of the vehicle routing problem in consideration of raw material collection; and second, it provides a new approach to solving optimisation problems.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 2 December 2022

Ahmed Abdullah Danook and Omar-F Hasan Al.obaidy

The purpose of this study is to examine the dimensions of strategic intent (SI; see Appendix 1) according to the Hamel and Prahalad model as a building for the future, relying on…

Abstract

Purpose

The purpose of this study is to examine the dimensions of strategic intent (SI; see Appendix 1) according to the Hamel and Prahalad model as a building for the future, relying on today’s knowledge-based and proactive strategic directions of management as long-term and deep-perspective creative directions, objective vision and rational analysis, integrative in work, survival structure and comprehensiveness in perception.

Design/methodology/approach

The quantitative approach was used based on research, detection and proof, as data were collected from leaders amounting to 70 respondents and analyzed in the SPSS program and ant colony optimization (see Appendix 1) algorithm and interpretation of the results.

Findings

It was found that the SI dimensions are poorly available due to problems related to foresight, capabilities and the strategic structure that represents the head of strategic objectives.

Practical implications

The empirical evaluation view of the study is valuable for leaders to draw a future strategy of advantage for organizations in developing countries to enrich their core capabilities by activating the SI dimensions.

Originality/value

It stems from a vital issue related to strategic dimensions aimed at a better future for strategic executive work, especially after the crisis that led to a significant decline in the level of performance of organizations.

Details

Nankai Business Review International, vol. 15 no. 1
Type: Research Article
ISSN: 2040-8749

Keywords

Content available
Book part
Publication date: 18 January 2024

Abstract

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Article
Publication date: 26 February 2024

Xiaohui Jia, Chunrui Tang, Xiangbo Zhang and Jinyue Liu

This study aims to propose an efficient dual-robot task collaboration strategy to address the issue of low work efficiency and inability to meet the production needs of a single…

Abstract

Purpose

This study aims to propose an efficient dual-robot task collaboration strategy to address the issue of low work efficiency and inability to meet the production needs of a single robot during construction operations.

Design/methodology/approach

A hybrid task allocation method based on integer programming and auction algorithms, with the aim of achieving a balanced workload between two robots has been proposed. In addition, while ensuring reasonable workload allocation between the two robots, an improved dual ant colony algorithm was used to solve the dual traveling salesman problem, and the global path planning of the two robots was determined, resulting in an efficient and collision-free path for the dual robots to operate. Meanwhile, an improved fast Random tree rapidly-exploring random tree algorithm is introduced as a local obstacle avoidance strategy.

Findings

The proposed method combines randomization and iteration techniques to achieve an efficient task allocation strategy for two robots, ensuring the relative optimal global path of the two robots in cooperation and solving complex local obstacle avoidance problems.

Originality/value

This method is applied to the scene of steel bar tying in construction work, with the workload allocation and collaborative work between two robots as evaluation indicators. The experimental results show that this method can efficiently complete the steel bar banding operation, effectively reduce the interference between the two robots and minimize the interference of obstacles in the environment.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 June 2023

Somia Boubedra, Cherif Tolba, Pietro Manzoni, Djamila Beddiar and Youcef Zennir

With the demographic increase, especially in big cities, heavy traffic, traffic congestion, road accidents and augmented pollution levels hamper transportation networks. Finding…

Abstract

Purpose

With the demographic increase, especially in big cities, heavy traffic, traffic congestion, road accidents and augmented pollution levels hamper transportation networks. Finding the optimal routes in urban scenarios is very challenging since it should consider reducing traffic jams, optimizing travel time, decreasing fuel consumption and reducing pollution levels accordingly. In this regard, the authors propose an enhanced approach based on the Ant Colony algorithm that allows vehicle drivers to search for optimal routes in urban areas from different perspectives, such as shortness and rapidness.

Design/methodology/approach

An improved ant colony algorithm (ACO) is used to calculate the optimal routes in an urban road network by adopting an elitism strategy, a random search approach and a flexible pheromone deposit-evaporate mechanism. In addition, the authors make a trade-off between route length, travel time and congestion level.

Findings

Experimental tests show that the routes found using the proposed algorithm improved the quality of the results by 30% in comparison with the ACO algorithm. In addition, the authors maintain a level of accuracy between 0.9 and 0.95. Therefore, the overall cost of the found solutions decreased from 67 to 40. In addition, the experimental results demonstrate that the authors’ improved algorithm outperforms not only the original ACO algorithm but also popular meta-heuristic algorithms such as the genetic algorithm (GA) and particle swarm optimization (PSO) in terms of reducing travel costs and improving overall fitness value.

Originality/value

The proposed improvements to the ACO to search for optimal paths for urban roads include incorporating multiple factors, such as travel length, time and congestion level, into the route selection process. Furthermore, random search, elitism strategy and flexible pheromone updating rules are proposed to consider the dynamic changes in road network conditions and make the proposed approach more relevant and effective. These enhancements contribute to the originality of the authors’ work, and they have the potential to advance the field of traffic routing.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of 107