Search results

1 – 10 of over 1000
Article
Publication date: 4 December 2017

Wu Deng, Meng Sun, Huimin Zhao, Bo Li and Chunxiao Wang

This study aims to propose a new airport gate assignment method to effectively improve the comprehensive operation capacity and efficiency of hub airport. Gate assignment is one…

Abstract

Purpose

This study aims to propose a new airport gate assignment method to effectively improve the comprehensive operation capacity and efficiency of hub airport. Gate assignment is one of the most important tasks for airport ground operations, which assigns appropriate airport gates with high efficiency reasonable arrangement.

Design/methodology/approach

In this paper, on the basis of analyzing the characteristics of airport gates and flights, an efficient multi-objective optimization model of airport gate assignment based on the objectives of the most balanced idle time, the shortest walking distances of passengers and the least number of flights at apron is constructed. Then an improved ant colony optimization (ICQACO) algorithm based on the ant colony collaborative strategy and pheromone update strategy is designed to solve the constructed model to fast realize the gate assignment and obtain a rational and effective gate assignment result for all flights in the different period.

Findings

In the designed ICQACO algorithm, the ant colony collaborative strategy is used to avoid the rapid convergence to the local optimal solution, and the pheromone update strategy is used to quickly increase the pheromone amount, eliminate the interference of the poor path and greatly accelerate the convergence speed.

Practical implications

The actual flight data from Guangzhou Baiyun airport of China is selected to verify the feasibility and effectiveness of the constructed multi-objective optimization model and the designed ICQACO algorithm. The experimental results show that the designed ICQACO algorithm can increase the pheromone amount, accelerate the convergence speed and avoid to fall into the local optimal solution. The constructed multi-objective optimization model can effectively improve the comprehensive operation capacity and efficiency. This study is a very meaningful work for airport gate assignment.

Originality/value

An efficient multi-objective optimization model for hub airport gate assignment problem is proposed in this paper. An improved ant colony optimization algorithm based on ant colony collaborative strategy and the pheromone update strategy is deeply studied to speed up the convergence and avoid to fall into the local optimal solution.

Book part
Publication date: 18 January 2024

Ackmez Mudhoo, Gaurav Sharma, Khim Hoong Chu and Mika Sillanpää

Adsorption parameters (e.g. Langmuir constant, mass transfer coefficient and Thomas rate constant) are involved in the design of aqueous-media adsorption treatment units. However…

Abstract

Adsorption parameters (e.g. Langmuir constant, mass transfer coefficient and Thomas rate constant) are involved in the design of aqueous-media adsorption treatment units. However, the classic approach to estimating such parameters is perceived to be imprecise. Herein, the essential features and performances of the ant colony, bee colony and elephant herd optimisation approaches are introduced to the experimental chemist and chemical engineer engaged in adsorption research for aqueous systems. Key research and development directions, believed to harness these algorithms for real-scale water treatment (which falls within the wide-ranging coverage of the Sustainable Development Goal 6 (SDG 6) ‘Clean Water and Sanitation for All’), are also proposed. The ant colony, bee colony and elephant herd optimisations have higher precision and accuracy, and are particularly efficient in finding the global optimum solution. It is hoped that the discussions can stimulate both the experimental chemist and chemical engineer to delineate the progress achieved so far and collaborate further to devise strategies for integrating these intelligent optimisations in the design and operation of real multicomponent multi-complexity adsorption systems for water purification.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 5 January 2010

A. Kaveh and S. Talatahari

The computational drawbacks of existing numerical methods have forced researchers to rely on heuristic algorithms. Heuristic methods are powerful in obtaining the solution of…

1596

Abstract

Purpose

The computational drawbacks of existing numerical methods have forced researchers to rely on heuristic algorithms. Heuristic methods are powerful in obtaining the solution of optimization problems. Although they are approximate methods (i.e. their solution are good, but not provably optimal), they do not require the derivatives of the objective function and constraints. Also, they use probabilistic transition rules instead of deterministic rules. The purpose of this paper is to present an improved ant colony optimization (IACO) for constrained engineering design problems.

Design/methodology/approach

IACO has the capacity to handle continuous and discrete problems by using sub‐optimization mechanism (SOM). SOM is based on the principles of finite element method working as a search‐space updating technique. Also, SOM can reduce the size of pheromone matrices, decision vectors and the number of evaluations. Though IACO decreases pheromone updating operations as well as optimization time, the probability of finding an optimum solution is not reduced.

Findings

Utilizing SOM in the ACO algorithm causes a decrease in the size of the pheromone vectors, size of the decision vector, size of the search space, the number of function evaluations, and finally the required optimization time. SOM performs as a search‐space‐updating rule, and it can exchange discrete‐continuous search domain to each other.

Originality/value

The suitability of using ACO for constrained engineering design problems is presented, and applied to optimal design of different engineering problems.

Details

Engineering Computations, vol. 27 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 September 2013

Huimin Li and Peng Li

This research aims to propose self-adaptive ant colony optimization (SACO) with changing parameters for solving time-cost optimization (TCO) problems to assist the relevant…

Abstract

Purpose

This research aims to propose self-adaptive ant colony optimization (SACO) with changing parameters for solving time-cost optimization (TCO) problems to assist the relevant construction management firm with their technological tool.

Design/methodology/approach

A SACO with changing parameters based on information entropy has been employed to model TCO problem, which overcomes the intrinsic weakness of premature convergence of the basic ant colony optimization by adjusting parameters according to mean information entropy of the ant system. A computer simulation with Matlab 7.0 based on a prototype example has been carried out on the basis of SACO for TCO problem.

Findings

The test results show that the SACO for TCO model can generate a better cost under the same duration and achieve a better Pareto front than other models. Therefore, the SACO can be regarded as a useful approach for solving construction project TCO problems.

Research limitations/implications

Further research on selection parameters should be conducted to further improve the robustness of the SACO for TCO model.

Practical implications

The modelling results can help the construction management to good result of TCO problems in construction sites.

Originality/value

A new approach to study the TCO model is proposed based on SACO.

Details

Kybernetes, vol. 42 no. 8
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 26 June 2023

Somia Boubedra, Cherif Tolba, Pietro Manzoni, Djamila Beddiar and Youcef Zennir

With the demographic increase, especially in big cities, heavy traffic, traffic congestion, road accidents and augmented pollution levels hamper transportation networks. Finding…

Abstract

Purpose

With the demographic increase, especially in big cities, heavy traffic, traffic congestion, road accidents and augmented pollution levels hamper transportation networks. Finding the optimal routes in urban scenarios is very challenging since it should consider reducing traffic jams, optimizing travel time, decreasing fuel consumption and reducing pollution levels accordingly. In this regard, the authors propose an enhanced approach based on the Ant Colony algorithm that allows vehicle drivers to search for optimal routes in urban areas from different perspectives, such as shortness and rapidness.

Design/methodology/approach

An improved ant colony algorithm (ACO) is used to calculate the optimal routes in an urban road network by adopting an elitism strategy, a random search approach and a flexible pheromone deposit-evaporate mechanism. In addition, the authors make a trade-off between route length, travel time and congestion level.

Findings

Experimental tests show that the routes found using the proposed algorithm improved the quality of the results by 30% in comparison with the ACO algorithm. In addition, the authors maintain a level of accuracy between 0.9 and 0.95. Therefore, the overall cost of the found solutions decreased from 67 to 40. In addition, the experimental results demonstrate that the authors’ improved algorithm outperforms not only the original ACO algorithm but also popular meta-heuristic algorithms such as the genetic algorithm (GA) and particle swarm optimization (PSO) in terms of reducing travel costs and improving overall fitness value.

Originality/value

The proposed improvements to the ACO to search for optimal paths for urban roads include incorporating multiple factors, such as travel length, time and congestion level, into the route selection process. Furthermore, random search, elitism strategy and flexible pheromone updating rules are proposed to consider the dynamic changes in road network conditions and make the proposed approach more relevant and effective. These enhancements contribute to the originality of the authors’ work, and they have the potential to advance the field of traffic routing.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 27 March 2009

Peter Korošec and Jurij Šilc

The purpose of this paper is to present an algorithm for global optimization of high‐dimensional real‐parameter cost functions.

Abstract

Purpose

The purpose of this paper is to present an algorithm for global optimization of high‐dimensional real‐parameter cost functions.

Design/methodology/approach

This optimization algorithm, called differential ant‐stigmergy algorithm (DASA), based on a stigmergy observed in colonies of real ants. Stigmergy is a method of communication in decentralized systems in which the individual parts of the system communicate with one another by modifying their local environment.

Findings

The DASA outperformed the included differential evolution type algorithm in convergence on all test functions and also obtained better solutions on some test functions.

Practical implications

The DASA may find applications in challenging real‐life optimization problems such as maximizing the empirical area under the receiver operating characteristic curve of glycomics mass spectrometry data and minimizing the logistic leave‐one‐out calculation measure for the gene‐selection criterion.

Originality/value

The DASA is one of the first antcolony optimization‐based algorithms proposed for global optimization of the high‐dimensional real‐parameter problems.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 28 March 2008

Nabil Nahas, Mustapha Nourelfath and Daoud Ait‐Kadi

The purpose of this paper is to extend the optimal design problem of series manufacturing production lines to series‐parallel lines, where redundant machines and in‐process…

Abstract

Purpose

The purpose of this paper is to extend the optimal design problem of series manufacturing production lines to series‐parallel lines, where redundant machines and in‐process buffers are both included to achieve a greater production rate. The objective is to maximize production rate subject to a total cost constraint.

Design/methodology/approach

An analytical method is proposed to evaluate the production rate, and an ant colony approach is developed to solve the problem. To estimate series‐parallel production line performance, each component (i.e. each set of parallel machines) of the original production line is approximated as a single unreliable machine. To determine the steady state behaviour of the resulting non‐homogeneous production line, it is first transformed into an approximately equivalent homogeneous line. Then, the well‐known Dallery‐David‐Xie algorithm (DDX) is used to solve the decomposition equations of the resulting (homogenous) line. The optimal design problem is formulated as a combinatorial optimisation one where the decision variables are buffers and types of machines, as well as the number of redundant machines. The effectiveness of the ant colony system approach is illustrated through numerical examples.

Findings

Simulation results show that the analytical approximation used to estimate series‐parallel production lines is very accurate. It has been found also that ant colonies can be extended to deal with the series‐parallel extension to determine near‐optimal or optimal solutions in a reasonable amount of time.

Practical implications

The model and the solution approach developed can be applied for optimal design of several industrial systems such as manufacturing lines and power production systems.

Originality/value

The paper presents an approach for the optimal design problem of series‐parallel manufacturing production lines.

Details

Journal of Quality in Maintenance Engineering, vol. 14 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 7 December 2021

Altug Piskin, Tolga Baklacioglu and Onder Turan

The purpose of this paper is to introduce a hybrid, metaheuristic, multimodal and multi-objective optimization tool that is needed for aerospace propulsion engineering problems.

Abstract

Purpose

The purpose of this paper is to introduce a hybrid, metaheuristic, multimodal and multi-objective optimization tool that is needed for aerospace propulsion engineering problems.

Design/methodology/approach

Multi-objective hybrid optimization code is integrated with various benchmark and test functions that are selected suitable to the difficulty level of the aero propulsion performance problems.

Findings

Ant colony and particle swarm optimization (ACOPSO) has performed satisfactorily with benchmark problems.

Research limitations/implications

ACOPSO is able to solve multi-objective and multimodal problems. Because every optimization problem has specific features, it is necessary to search their general behavior using other algorithms.

Practical implications

In addition to the optimization solving, ACOPSO enables an alternative methodology for turbine engine performance calculations by using generic components maps. The user is flexible for searching various effects of component designs along with the compressor and turbine maps.

Originality/value

A hybrid optimization code that has not been used before is introduced. It is targeted use is propulsion systems optimization and design such as Turboshaft or turbofan by preparing the necessary engine functions. A number of input parameters and objective functions can be modified accordingly.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 21 August 2009

Jelmer Marinus van Ast, Robert Babuška and Bart De Schutter

The purpose of this paper is to propose a novel ant colony optimization (ACO) approach to optimal control. The standard ACO algorithms have proven to be very powerful optimization

Abstract

Purpose

The purpose of this paper is to propose a novel ant colony optimization (ACO) approach to optimal control. The standard ACO algorithms have proven to be very powerful optimization metaheuristic for combinatorial optimization problems. They have been demonstrated to work well when applied to various nondeterministic polynomial‐complete problems, such as the travelling salesman problem. In this paper, ACO is reformulated as a model‐free learning algorithm and its properties are discussed.

Design/methodology/approach

First, it is described how quantizing the state space of a dynamic system introduces stochasticity in the state transitions and transforms the optimal control problem into a stochastic combinatorial optimization problem, motivating the ACO approach. The algorithm is presented and is applied to the time‐optimal swing‐up and stabilization of an underactuated pendulum. In particular, the effect of different numbers of ants on the performance of the algorithm is studied.

Findings

The simulations show that the algorithm finds good control policies reasonably fast. An increasing number of ants results in increasingly better policies. The simulations also show that although the policy converges, the ants keep on exploring the state space thereby capable of adapting to variations in the system dynamics.

Research limitations/implications

This paper introduces a novel ACO approach to optimal control and as such marks the starting point for more research of its properties. In particular, quantization issues must be studied in relation to the performance of the algorithm.

Originality/value

The paper presented is original as it presents the first application of ACO to optimal control problems.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 29 April 2014

Lucas S. Batista, Felipe Campelo, Frederico G. Guimarães, Jaime A. Ramírez, Min Li and David A. Lowther

– The purpose of this paper is to apply an Ant colony optimization approach for the solution of the topological design of interior permanent magnet (IPM) machines.

Abstract

Purpose

The purpose of this paper is to apply an Ant colony optimization approach for the solution of the topological design of interior permanent magnet (IPM) machines.

Design/methodology/approach

The IPM motor design domain is discretized into a suitable equivalent graph representation and an Ant System (AS) algorithm is employed to achieve an efficient distribution of materials into this graph.

Findings

The single-objective problems associated with the maximization of the torque and with the maximization of the shape smoothness of the IPM are investigated. The rotor of the device is discretized into a 9×18 grid in both cases, and three different materials are considered: air, iron and permanent magnet.

Research limitations/implications

The graph representation used enables the solution of topological design problems with an arbitrary number of materials, which is relevant for 2 and 3D problems.

Originality/value

From the numerical experiments, the AS algorithm was able to achieve reasonable shapes and torque values for both design problems. The results show the relevance of the mechanism for multi-domain topology optimization of electromagnetic devices.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 1000