Search results

1 – 4 of 4
Article
Publication date: 3 October 2022

Zehra Pinar Izgi

The aim of this work is to obtain periodic waves of Eq. (1) via ansatz-based methods. So, the open questions are replied and the gap will be filled in the literature…

Abstract

Purpose

The aim of this work is to obtain periodic waves of Eq. (1) via ansatz-based methods. So, the open questions are replied and the gap will be filled in the literature. Additionally, the comparison of the considered models (Eq. (1) and Eq. (2)) due to their performance. Although it is extremely difficult to find the exact wave solutions in Eq. (1) and Eq. (2) without any assumptions, the targeted solutions have been obtained with the chosen method.

Design/methodology/approach

Material science is the today's popular research area. So, the well-known model is the dissipation double dispersive nonlinear equation and, in the literature, open queries have been seen. The aim of this work is to reply open queries by obtaining wave solutions of the dissipation double dispersive model, double dispersive model and double dispersive model for Murnaghan's material via ansatz-based methods.

Findings

The results have been appeared for the first time in this communication work and they may be valuable for developing uses in material science.

Originality/value

The exact wave solutions of Eq. (1) and Eq. (2) without any assumptions have been obtained with via ansatz-based method. So, the open questions are replied and the gap will be filled in the literature.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 December 2022

Zehra Pinar Izgi

When the literature is reviewed carefully, the analytical solutions of these types of models are missing. First using appropriate similarity transformation, the equations are…

Abstract

Purpose

When the literature is reviewed carefully, the analytical solutions of these types of models are missing. First using appropriate similarity transformation, the equations are reduced to dimensionless form (NODE). To solve the reduced models, ansatz-based methods are considered. Finally, the explicit form solutions are obtained and the effects of material parameters and Prandtl number on the velocity and temperature profiles are shown in figures by the exact solutions. This study aims to discuss the aforementioned solution.

Design/methodology/approach

One of the non-Newtonian fluids is Eyring-Powell (EP) fluid which is derived from the kinetic theory of fluids. Two variations of EP model are considered to obtain the exact solutions that are missing in the literature. In order to obtain exact solutions, one of the ansatz-based methods is considered. The effects of material parameters and Prandtl number on the velocity and temperature profiles are shown in figures by the exact solutions. The results will guide to develop the model to predict the velocity profile and temperature profile when experimental data for dimensionless material parameters of EP fluid are available.

Findings

Finally, the explicit form solutions are obtained and the effects of material parameters and Prandtl number are shown in the figures. The results will guide to develop of the model to predict the velocity profile and temperature profile when experimental data for dimensionless material parameters of EP fluid are available. For the modified EP models, only special cases are considered. The generalized form, i.e. the modified EP models, which include deformation parameters, will be considered in the authors’ future work.

Originality/value

When the literature is reviewed carefully, the analytical solutions of these types of models are missing so by this work, the gap in the literature is filled. The explicit form solutions are obtained and the effects of material parameters and Prandtl number on the velocity and temperature profiles are shown in figures.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 September 2017

Franz Pichler, Niels Koester and Alexander Thaler

This paper aims to present a fully coupled thermo-electrical finite-element battery model with an applied model-order reduction. The model is used to analyse the thermal design of…

Abstract

Purpose

This paper aims to present a fully coupled thermo-electrical finite-element battery model with an applied model-order reduction. The model is used to analyse the thermal design of battery modules during typical drive-cycles of electric vehicles.

Design/methodology/approach

A model-order reduction is applied, in which the electrical linear bus-bars are analysed in an a-priori step. For these bus-bars, special distributed basis-functions are computed, which make the solution of differential Ohm's law unnecessary during the transient simulation. Furthermore, the distributed basis-functions are used to strongly couple the non-linear battery models, which reduces the iterations needed to simulate them.

Findings

Altogether, this results in a fast simulation scheme for coupled linear and non-linear electrical components and their thermal behaviour.

Originality/value

The presented method delivers an innovative approach, on how to systematically minimize the computational effort in a system of linear and non-linear electrical components, while keeping the full three-dimensional information of the original problem.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 26 July 2023

Fong Yew Leong, Dax Enshan Koh, Wei-Bin Ewe and Jian Feng Kong

This study aims to assess the use of variational quantum imaginary time evolution for solving partial differential equations using real-amplitude ansätze with full circular…

1124

Abstract

Purpose

This study aims to assess the use of variational quantum imaginary time evolution for solving partial differential equations using real-amplitude ansätze with full circular entangling layers. A graphical mapping technique for encoding impulse functions is also proposed.

Design/methodology/approach

The Smoluchowski equation, including the Derjaguin–Landau–Verwey–Overbeek potential energy, is solved to simulate colloidal deposition on a planar wall. The performance of different types of entangling layers and over-parameterization is evaluated.

Findings

Colloidal transport can be modelled adequately with variational quantum simulations. Full circular entangling layers with real-amplitude ansätze lead to higher-fidelity solutions. In most cases, the proposed graphical mapping technique requires only a single bit-flip with a parametric gate. Over-parameterization is necessary to satisfy certain physical boundary conditions, and higher-order time-stepping reduces norm errors.

Practical implications

Variational quantum simulation can solve partial differential equations using near-term quantum devices. The proposed graphical mapping technique could potentially aid quantum simulations for certain applications.

Originality/value

This study shows a concrete application of variational quantum simulation methods in solving practically relevant partial differential equations. It also provides insight into the performance of different types of entangling layers and over-parameterization. The proposed graphical mapping technique could be valuable for quantum simulation implementations. The findings contribute to the growing body of research on using variational quantum simulations for solving partial differential equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 4 of 4