Search results

1 – 1 of 1
Article
Publication date: 9 April 2019

Dongmei Zhao, Yifan Xia, Haiwen Ge, Qizhao Lin, Jianfeng Zou and Gaofeng Wang

Ignition process is a critical issue in combustion systems. It is particularly important for reliability and safety prospects of aero-engine. This paper aims to numerically…

Abstract

Purpose

Ignition process is a critical issue in combustion systems. It is particularly important for reliability and safety prospects of aero-engine. This paper aims to numerically investigate the burner-to-burner propagation during ignition process in a full annular multiple-injector combustor and then validate it by comparing with experimental results.

Design/methodology/approach

The annular multiple-injector experimental setup features 16 swirling injectors and two quartz tubes providing optical accesses to high-speed imaging of flames. A Reynolds averaged Navier–Stokes model, adaptive mesh refinement (AMR) and complete San Diego chemistry are used to predict the ignition process.

Findings

The ignition process shows an overall agreement with experiment. The integrated heat release rate of simulation and the integrated light intensity of experiment is also within reasonable agreement. The flow structure and flame propagation dynamics are carefully analyzed. It is found that the flame fronts propagate symmetrically at an early stage and asymmetrically near merging stage. The flame speed slows down before flame merging. Overall, the numerical results show that the present numerical model can reliably predict the flame propagation during the ignition process.

Originality/value

The dedicated AMR method together with detailed chemistry is used for predicting the unsteady ignition procedure in a laboratory-scale annular combustor for the first time. The validation shows satisfying agreements with the experimental investigations. Some details of flow structures are revealed to explain the characteristics of unsteady flame propagations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 1 of 1