Search results

1 – 10 of 41
Article
Publication date: 19 December 2017

Basant Kumar Jha and Babatunde Aina

The purpose of this paper is to further extend the work of Weng and Chen (2009) by considering heat generation/absorption nature of fluid.

Abstract

Purpose

The purpose of this paper is to further extend the work of Weng and Chen (2009) by considering heat generation/absorption nature of fluid.

Design/methodology/approach

Exact solution of momentum equation is derived separately in terms of Bessel’s function of first and second kind for heat-generating fluid and modified Bessel’s function of first and second kind for heat absorbing fluid.

Findings

During the course of numerical computations, it is found that skin friction and rate of heat transfer at outer surface of inner cylinder and inner surface of outer cylinder increases with the increase in heat generation parameter while the reverse trend is found in the case of heat absorption parameter.

Originality/value

In view of the amount of works done on natural convection with internal heat generation/absorption, it becomes interesting to investigate the effect of this important activity on natural convection flow in a vertical annular micro-channel. The purpose of this paper is to further extend the work of Weng and Chen (2009) by considering heat generation/absorption nature of fluid.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 November 2020

Mahantesh M. Nandeppanavar, Kemparaju M.C. and N. Raveendra

This paper aims to report the investigation of over heat and mass transfer of convective Casson fluid flow over a moving vertical plate with nonlinear thermal radiation and…

Abstract

Purpose

This paper aims to report the investigation of over heat and mass transfer of convective Casson fluid flow over a moving vertical plate with nonlinear thermal radiation and convective boundary conditions.

Design/methodology/approach

The main partial differential equations of the flow, heat and concentration profiles were rehabilitated to nonlinear ordinary differential equations by using an appropriate similarity transformation. The resultant nonlinear ordinary differential equations (ODEs) are solved numerically applying fourth-order Runge–Kutta shooting technique and functions of ODE45 from MATLAB.

Findings

The effect of convective heat transfer, buoyancy ratio parameter, nonlinear thermal radiation, Prandtl number, Rayleigh number and Schmidt number over velocity, temperature and concentration profiles, equivalent to abundant somatic parameters were graphically scrutinized.

Originality/value

All the results are very promising and further there is got good agreement of results when compared with earlier published results at limiting conditions.

Details

World Journal of Engineering, vol. 18 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 January 2005

Pradeep Hegde, K.N. Seetharamu, G.A. Quadir, P.A. Aswathanarayana, M.Z. Abdullah and Z.A. Zainal

To analyze two‐phase flow in micro‐channel heat exchangers used for high flux micro‐electronics cooling and to obtain performance parameters such as thermal resistance, pressure…

1234

Abstract

Purpose

To analyze two‐phase flow in micro‐channel heat exchangers used for high flux micro‐electronics cooling and to obtain performance parameters such as thermal resistance, pressure drop, etc. Both uniform and non‐uniform micro‐channel base heat fluxes are considered.

Design/methodology/approach

Energy balance equations are developed for two‐phase flow in micro‐channels and are solved using the finite element method (FEM). A unique ten noded element is used for the channel descritization. The formulation also automatically takes care of single‐phase flow in the micro‐channel.

Findings

Micro‐channel wall temperature distribution, thermal resistance and the pressure drop for various uniform micro‐channel base heat fluxes are obtained, both for single‐ and two‐phase flows in the micro‐channel. Results are compared against data available in the literature. The wall temperature distribution for a particular case of non‐uniform base heat flux is also obtained.

Research limitations/implications

The analysis is done for a single micro‐channel and the effects of multiple or stacked channels are not considered. The analysis needs to be carried out for higher heat fluxes and the validity of the correlation needs to be ascertained through experimentation. Effects of flow mal‐distribution in multiple channels, etc. need to be considered.

Practical implications

The role of two‐phase flow in micro‐channels for high flux micro‐electronics cooling in reducing the thermal resistance is demonstrated. The formulation is very useful for the thermal design and management of microchannels with both single‐ and two‐phase flows for either uniform or non‐uniform base heat flux.

Originality/value

A simple approach to accurately determine the thermal resistance in micro‐channels with two‐phase flow, for both uniform and non‐uniform base heat fluxes is the originality of the paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 March 2020

S. Sindhu, B.J. Gireesha and G. Sowmya

The influence of radiation on nanoliquid flow through a vertical microchannel in the presence of heat source is examined. This study aims to investigate the efficiency of…

Abstract

Purpose

The influence of radiation on nanoliquid flow through a vertical microchannel in the presence of heat source is examined. This study aims to investigate the efficiency of multi-walled carbon nanotube (MWCNT) considering water and engine oil as base fluid.

Design/methodology/approach

Nondimensional variables are used to obtain the dimensionless physical model. The solutions are computed numerically via Runge–Kutta–Fehlberg integration scheme.

Findings

It is established that (knf/kf)Lamina > (knf/kf)Column > (knf/kf)Tetrahedron > (knf/kf)Hexahedron > (knf/kf)Sphere.

Originality/value

Thermal conductivity of MWCNT is analyzed using different models. Also, it is remarked that Xue model exhibits higher thermal conductivity for MWCNT compared to Maxwell model, Yu-Choi model and Hamilton-Crosser model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 October 2016

Rabah Nebbati and Mahfoud Kadja

The purpose of this study is the numerical prediction of the thermal and hydraulic characteristics (Nusselt number and shear stress) of a forced convection laminar flow through a…

Abstract

Purpose

The purpose of this study is the numerical prediction of the thermal and hydraulic characteristics (Nusselt number and shear stress) of a forced convection laminar flow through a rectangular micro-channel heat sink, using constant and temperature-dependent thermo-physical properties. The effects of the solids volume fraction and the size of the micro-channel on heat transfer enhancement have also been investigated.

Design/methodology/approach

The authors use the flow of a water-Al2O3 nanofluid and a single-phase approach. The equations are solved using the commercial code Fluent Version 6.3. This code uses the finite volume approach to solve the equations subject to the boundary conditions, which govern three-dimensional conjugate convection-conduction heat transfer model. The physical domain was meshed using the code GAMBIT. The mesh used is non-uniform and was obtained by sweeping in the Z direction an X-Y surface meshed with QUAD/pave type cells.

Findings

The results clearly show that the inclusion of nanoparticles produces a considerable increase in the heat transfer. Also, the temperature-dependent models present higher values of local and average Nusselt number than in the case of constant thermo-physical properties, and an increase in the channel dimensions leads to an important increase in heat transfer. Consequently, we ensure a better cooling of the base of the micro-channel heat sink.

Research limitations/implications

Because of the settling of nanoparticles, the research results may not be generalized to high values of solids volume fraction. Therefore, researchers are encouraged to find other techniques of cooling when the heat loads exceed values that cannot be dissipated using nanonofluids.

Practical implications

The paper includes implications for the miniaturization of electronic devices such as in microprocessors or those used in robotics and automotive industries, where continually increasing power densities are requiring more innovative techniques of heat dissipation from a small area and small coolant requirements.

Originality/value

This paper shows the implementation of variable property nanofluid models in CFD commercial codes.

Details

World Journal of Engineering, vol. 13 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 July 2008

Colin F. McDonald, Aristide F. Massardo, Colin Rodgers and Aubrey Stone

This paper seeks to evaluate the potential of heat exchanged aeroengines for future Unmanned Aerial Vehicle (UAV), helicopter, and aircraft propulsion, with emphasis placed on…

7828

Abstract

Purpose

This paper seeks to evaluate the potential of heat exchanged aeroengines for future Unmanned Aerial Vehicle (UAV), helicopter, and aircraft propulsion, with emphasis placed on reduced emissions, lower fuel burn, and less noise.

Design/methodology/approach

Aeroengine performance analyses were carried out covering a wide range of parameters for more complex thermodynamic cycles. This led to the identification of major component features and the establishing of preconceptual aeroengine layout concepts for various types of recuperated and ICR variants.

Findings

Novel aeroengine architectures were identified for heat exchanged turboshaft, turboprop, and turbofan variants covering a wide range of applications. While conceptual in nature, the results of the analyses and design studies generally concluded that heat exchanged engines represent a viable solution to meet demanding defence and commercial aeropropulsion needs in the 2015‐2020 timeframe, but they would require extensive development.

Research limitations/implications

As highlighted in Parts I and II, early development work was focused on the use of recuperation, but this is only practical with compressor pressure ratios up to about 10. For today's aeroengines with pressure ratios up to about 50, improvement in SFC can only be realised by incorporating intercooling and recuperation. The new aeroengine concepts presented are clearly in an embryonic stage, but these should enable gas turbine and heat exchanger specialists to advance the technology by conducting more in‐depth analytical and design studies to establish higher efficiency and “greener” gas turbine aviation propulsion systems.

Originality/value

It is recognised that meeting future environmental and economic requirements will have a profound effect on aeroengine design and operation, and near‐term efforts will be focused on improving conventional simple‐cycle engines. This paper has addressed the longer‐term potential of heat exchanged aeroengines and has discussed novel design concepts. A deployment strategy, aimed at gaining confidence with emphasis placed on assuring engine reliability, has been suggested, with the initial development and flight worthiness test of a small recuperated turboprop engine for UAVs, followed by a larger recuperated turboshaft engine for a military helicopter, and then advancement to a larger and far more complex ICR turbofan engine.

Details

Aircraft Engineering and Aerospace Technology, vol. 80 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 27 April 2020

B.J. Gireesha and A. Roja

Microfluidics is one of the interesting areas of the research in thermal and engineering fields due to its wide range of applications in a variety of heat transport problems such…

Abstract

Purpose

Microfluidics is one of the interesting areas of the research in thermal and engineering fields due to its wide range of applications in a variety of heat transport problems such as micromixers, micropumps, cooling systems for microelectromechanical systems (MEMS) micro heat exchangers, etc. Lower cost with better thermal performance is the main objective of these devices. Therefore, in this study, the entropy generation in an electrically conducting Casson fluid flow through an inclined microchannel with hydraulic slip and the convective condition hves been numerically investigated. Aspects of viscous dissipation, natural convection, joule heating, magnetic field and uniform heat source/sink are used

Design/methodology/approach

Suitable non-dimensional variables are used to reduce the non-linear system of ordinary differential equations, and then this system is solved numerically using Runge-Kutta-Fehlberg fourth fifth order method along with shooting technique. The obtained numerical solutions of the fluid velocity and temperature are used to characterize the entropy generation and Bejan number. Also, the Nusselt number and skin friction coefficient for various values of parameters are examined in detail through graphs. The obtained present results are compared with the existing one which is perfectly found to be in good agreement.

Findings

It is established that the production of the entropy can be improved with the aspects of joule heating, viscous dissipation and internal heat source/sink. The entropy generation enhances for increasing values of Casson Parameter (β) and Biot number (Bi). Furthermore, it is interestingly noticed that the enhancement of Reynolds number and uniform heat source/sink shows the dual behaviour of the entropy generation due to significant influence of the viscous forces in the region close to the channel walls. It was observed that increasing behaviour of the heat transfer rate for enhancement values of the Eckert number and heat source/sink ratio parameter and the drag force are retarded with higher estimations of Reynolds number.

Originality/value

Entropy generation analysis on MHD Casson fluid flow through an inclined microchannel with the aspects of convective, Joule heating, viscous dissipation, magnetism, hydraulic slip and internal heat source/sink has been numerically investigated.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 23 November 2018

Shib Sankar Giri, Kalidas Das and Prabir Kumar Kundu

The purpose of this paper is to discuss the flow and heat transference of unsteady nanofluid thin film flow due to linear stretching velocity over a horizontally placed stretching…

Abstract

Purpose

The purpose of this paper is to discuss the flow and heat transference of unsteady nanofluid thin film flow due to linear stretching velocity over a horizontally placed stretching sheet in corporation of aligned magnetic field and non-uniform heat source/sink.

Design/methodology/approach

Leading equations of the course have been normalized via similarity approach and unraveled the resulting non-linear equations numerically by consuming RK-4 shooting practice to execute flow analysis.

Findings

A close agreement of two sets (for two different base fluids – polyvinyl alcohol and water) of result is perceived. The authors find that inclined magnetic field and nanoparticles concentration curbed velocity distribution which, in turn, causes enrichment of system of temperature distribution.

Originality/value

The paper acquires realistic numerical explanations in form of rapidly convergent series. The influence of emergent flow parameters on specific flow are made appropriately via graphs and charts. An unbiased result scrutiny of the existing section with formerly conveyed result is provided.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 July 2014

Dongliang Sun, Jinliang Xu and Peng Ding

Based on the numerical research on the relationship between the flow pattern transition and the condensation heat transfer in circular microchannels, the purpose of this paper is…

Abstract

Purpose

Based on the numerical research on the relationship between the flow pattern transition and the condensation heat transfer in circular microchannels, the purpose of this paper is to bring forward a concept of external separation circular microchannel to regulate and control the flow pattern for enhancing the condensation heat transfer.

Design/methodology/approach

The numerical research is based on the volume of fluid method and the vapor-liquid phase change model proposed by the present authors.

Findings

By numerical research on the condensation process of water in a general circular microchannel, it is discovered that, with the increase of the inlet velocity and the reduction of the temperature difference between the saturation temperature and the channel wall temperature, the bubble detachment frequency is raised and the water vapor condensation length is extended, representing an exponential growth. Therefore, for the condensation process with low temperature difference and high mass flow rate, it is in urgent need to regulate and control the flow pattern.

Originality/value

To prevent the flow pattern in the general circular microchannel converted from annular flow to slug flow and then to bubble flow, this paper brings forward a concept of external separation circular microchannel, which regulates and controls the flow pattern by discharging partial liquid from the annular wall opening. After regulation and control, the flow pattern is converted from original periodic annular flow/slug flow/bubble flow to current stable annular flow. Accordingly, the heat transfer performance is enhanced and the condensation length is lowered remarkably.

Details

Engineering Computations, vol. 31 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 July 2018

Taiwo S. Yusuf and Basant K. Jha

The purpose of this paper is to present a semi-analytical solution for time-dependent natural convection flow with heat generation/absorption in an annulus partially filled with…

Abstract

Purpose

The purpose of this paper is to present a semi-analytical solution for time-dependent natural convection flow with heat generation/absorption in an annulus partially filled with porous material.

Design/methodology/approach

The governing partial differential equations are transformed into the ordinary differential equations using the Laplace transform technique. The exact solution obtained is inverted from the Laplace domain to time domain using the Riemann-sum approximation approach. Justification of the Riemann-sum approximation approach is achieved by comparing the values obtained with those of the implicit finite difference method at both the transient state and the steady state at large time.

Findings

If is found that the peak axial velocity always occur in the clear fluid region. In addition, there is an indication that heat generating fluid is desirable for optimum mass flux in the annular gap most importantly when the convection current is enhanced by constant heat flux.

Originality/value

In view of the amount of works done on natural convection with internal heat generation/absorption, it becomes interesting to investigate the influence of this essential activity on natural convection flow in a vertical cylinder partially filled with porous material where the outer surface of the inner cylinder is either heated isothermally or with constant heat flux.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 41