Search results

1 – 10 of 288
Article
Publication date: 5 February 2024

Mohammad A Gharaibeh and Ayman Alkhatatbeh

The continuous increase of energy demands is a critical worldwide matter. Jordan’s household sector accounts for 44% of overall electricity usage annually. This study aims to use…

Abstract

Purpose

The continuous increase of energy demands is a critical worldwide matter. Jordan’s household sector accounts for 44% of overall electricity usage annually. This study aims to use artificial neural networks (ANNs) to assess and forecast electricity usage and demands in Jordan’s residential sector.

Design/methodology/approach

Four parameters are evaluated throughout the analysis, namely, population (P), income level (IL), electricity unit price (E$) and fuel unit price (F$). Data on electricity usage and independent factors are gathered from government and literature sources from 1985 to 2020. Several networks are analyzed and optimized for the ANN in terms of root mean square error, mean absolute percentage error and coefficient of determination (R2).

Findings

The predictions of this model are validated and compared with literature-reported models. The results of this investigation showed that the electricity demand of the Jordanian household sector is mainly driven by the population and the fuel price. Finally, time series analysis approach is incorporated to forecast the electricity demands in Jordan’s residential sector for the next decade.

Originality/value

The paper provides useful recommendations and suggestions for the decision-makers in the country for dynamic planning for future resource policies in the household sector.

Details

Journal of Science and Technology Policy Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 16 August 2023

Taraprasad Mohapatra, Sudhansu Sekhar Mishra, Mukesh Bathre and Sudhansu Sekhar Sahoo

The study aims to determine the the optimal value of output parameters of a variable compression ratio (CR) diesel engine are investigated at different loads, CR and fuel modes of…

Abstract

Purpose

The study aims to determine the the optimal value of output parameters of a variable compression ratio (CR) diesel engine are investigated at different loads, CR and fuel modes of operation experimentally. The output parameters of a variable compression ratio (CR) diesel engine are investigated at different loads, CR and fuel modes of operation experimentally. The performance parameters like brake thermal efficiency (BTE) and brake specific energy consumption (BSEC), whereas CO emission, HC emission, CO2 emission, NOx emission, exhaust gas temperature (EGT) and opacity are the emission parameters measured during the test. Tests are conducted for 2, 6 and 10 kg of load, 16.5 and 17.5 of CR.

Design/methodology/approach

In this investigation, the first engine was fueled with 100% diesel and 100% Calophyllum inophyllum oil in single-fuel mode. Then Calophyllum inophyllum oil with producer gas was fed to the engine. Calophyllum inophyllum oil offers lower BTE, CO and HC emissions, opacity and higher EGT, BSEC, CO2 emission and NOx emissions compared to diesel fuel in both fuel modes of operation observed. The performance optimization using the Taguchi approach is carried out to determine the optimal input parameters for maximum performance and minimum emissions for the test engine. The optimized value of the input parameters is then fed into the prediction techniques, such as the artificial neural network (ANN).

Findings

From multiple response optimization, the minimum emissions of 0.58% of CO, 42% of HC, 191 ppm NOx and maximum BTE of 21.56% for 16.5 CR, 10 kg load and dual fuel mode of operation are determined. Based on generated errors, the ANN is also ranked for precision. The proposed ANN model provides better prediction with minimum experimental data sets. The values of the R2 correlation coefficient are 1, 0.95552, 0.94367 and 0.97789 for training, validation, testing and all, respectively. The said biodiesel may be used as a substitute for conventional diesel fuel.

Originality/value

The blend of Calophyllum inophyllum oil-producer gas is used to run the diesel engine. Performance and emission analysis has been carried out, compared, optimized and validated.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 October 2021

Hadi Shabanpour, Saeed Yousefi and Reza Farzipoor Saen

The objective of this research is to put forward a novel closed-loop circular economy (CE) approach to forecast the sustainability of supply chains (SCs). We provide a practical…

449

Abstract

Purpose

The objective of this research is to put forward a novel closed-loop circular economy (CE) approach to forecast the sustainability of supply chains (SCs). We provide a practical and real-world CE framework to improve and fill the current knowledge gap in evaluating sustainability of SCs. Besides, we aim to propose a real-life managerial forecasting approach to alert the decision-makers on the future unsustainability of SCs.

Design/methodology/approach

It is needed to develop an integrated mathematical model to deal with the complexity of sustainability and CE criteria. To address this necessity, for the first time, network data envelopment analysis (NDEA) is incorporated into the dynamic data envelopment analysis (DEA) and artificial neural network (ANN). In general, methodologically, the paper uses a novel hybrid decision-making approach based on a combination of dynamic and network DEA and ANN models to evaluate sustainability of supply chains using environmental, social, and economic criteria based on real life data and experiences of knowledge-based companies so that the study has a good adaptation with the scope of the journal.

Findings

A practical CE evaluation framework is proposed by incorporating recyclable undesirable outputs into the models and developing a new hybrid “dynamic NDEA” and “ANN” model. Using ANN, the sustainability trend of supply chains for future periods is forecasted, and the benchmarks are proposed. We deal with the undesirable recycling outputs, inputs, desirable outputs and carry-overs simultaneously.

Originality/value

We propose a novel hybrid dynamic NDEA and ANN approach for forecasting the sustainability of SCs. To do so, for the first time, we incorporate a practical CE concept into the NDEA. Applying the hybrid framework provides us a new ranking approach based on the sustainability trend of SCs, so that we can forecast unsustainable supply chains and recommend preventive solutions (benchmarks) to avoid future losses. A practicable case study is given to demonstrate the real-life applications of the proposed method.

Details

Journal of Enterprise Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0398

Keywords

Open Access
Article
Publication date: 13 August 2020

Mariam AlKandari and Imtiaz Ahmad

Solar power forecasting will have a significant impact on the future of large-scale renewable energy plants. Predicting photovoltaic power generation depends heavily on climate…

10478

Abstract

Solar power forecasting will have a significant impact on the future of large-scale renewable energy plants. Predicting photovoltaic power generation depends heavily on climate conditions, which fluctuate over time. In this research, we propose a hybrid model that combines machine-learning methods with Theta statistical method for more accurate prediction of future solar power generation from renewable energy plants. The machine learning models include long short-term memory (LSTM), gate recurrent unit (GRU), AutoEncoder LSTM (Auto-LSTM) and a newly proposed Auto-GRU. To enhance the accuracy of the proposed Machine learning and Statistical Hybrid Model (MLSHM), we employ two diversity techniques, i.e. structural diversity and data diversity. To combine the prediction of the ensemble members in the proposed MLSHM, we exploit four combining methods: simple averaging approach, weighted averaging using linear approach and using non-linear approach, and combination through variance using inverse approach. The proposed MLSHM scheme was validated on two real-time series datasets, that sre Shagaya in Kuwait and Cocoa in the USA. The experiments show that the proposed MLSHM, using all the combination methods, achieved higher accuracy compared to the prediction of the traditional individual models. Results demonstrate that a hybrid model combining machine-learning methods with statistical method outperformed a hybrid model that only combines machine-learning models without statistical method.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 15 December 2023

Isuru Udayangani Hewapathirana

This study explores the pioneering approach of utilising machine learning (ML) models and integrating social media data for predicting tourist arrivals in Sri Lanka.

Abstract

Purpose

This study explores the pioneering approach of utilising machine learning (ML) models and integrating social media data for predicting tourist arrivals in Sri Lanka.

Design/methodology/approach

Two sets of experiments are performed in this research. First, the predictive accuracy of three ML models, support vector regression (SVR), random forest (RF) and artificial neural network (ANN), is compared against the seasonal autoregressive integrated moving average (SARIMA) model using historical tourist arrivals as features. Subsequently, the impact of incorporating social media data from TripAdvisor and Google Trends as additional features is investigated.

Findings

The findings reveal that the ML models generally outperform the SARIMA model, particularly from 2019 to 2021, when several unexpected events occurred in Sri Lanka. When integrating social media data, the RF model performs significantly better during most years, whereas the SVR model does not exhibit significant improvement. Although adding social media data to the ANN model does not yield superior forecasts, it exhibits proficiency in capturing data trends.

Practical implications

The findings offer substantial implications for the industry's growth and resilience, allowing stakeholders to make accurate data-driven decisions to navigate the unpredictable dynamics of Sri Lanka's tourism sector.

Originality/value

This study presents the first exploration of ML models and the integration of social media data for forecasting Sri Lankan tourist arrivals, contributing to the advancement of research in this domain.

Details

Journal of Tourism Futures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2055-5911

Keywords

Article
Publication date: 7 August 2023

Niraj Mishra, Praveen Srivastava, Satyajit Mahato and Shradha Shivani

This paper aims to create and evaluate a model for cryptocurrency adoption by investigating how age, education, and gender impact Behavioural Intention. A hybrid approach that…

457

Abstract

Purpose

This paper aims to create and evaluate a model for cryptocurrency adoption by investigating how age, education, and gender impact Behavioural Intention. A hybrid approach that combined partial least squares structural equation modeling (PLS-SEM) and artificial neural network (ANN) was used for the purpose.

Design/methodology/approach

This study uses a multi-analytical hybrid approach, combining PLS-SEM and ANN to illustrate the impact of various identified variables on behavioral intention toward using cryptocurrency. Multi-group analysis (MGA) is applied to determine whether different data groups of age, gender and education have significant differences in the parameter estimates that are specific to each group.

Findings

The findings indicate that Social Influence (SI) has the greatest impact on Behavioral Intention (BI), which suggests that the viewpoints and recommendations of influential and well-known individuals can serve as a motivating factor to invest in cryptocurrencies. Furthermore, education was found to be a moderating factor in the relationship found between behavioral intention and design.

Research limitations/implications

Prior studies on technology adoption have utilized superficial SEM and ANN methods, whereas a more effective outcome has been suggested by implementing a dual-stage PLS-SEM and ANN approach utilizing a deep neural network architecture. This methodology can enhance the accuracy of nonlinear connections in the model and augment the deep learning capacity.

Practical implications

The research is based on the Unified Theory of Acceptance and Use of Technology (UTAUT2) and expands upon this model by integrating elements of design and trust. This is an important addition, as design can influence individuals' willingness to try new technologies, while trust is a critical factor in determining whether individuals will adopt and use new technology.

Social implications

Cryptocurrencies are a relatively new phenomenon in India, and their use and adoption have grown significantly in recent years. However, this development has not been without controversy, as the implications of cryptocurrencies for society, the economy and governance remain uncertain. The results reveal that social influence is an important predictor for the adoption of cryptocurrency in India, and this can help financial institutions and regulators in making policy decisions accordingly.

Originality/value

Given the emerging nature of cryptocurrency adoption in India, there is certainly a need for further empirical research in this area. The current study aims to address this research gap and achieve the following objectives: (a) to determine if a dual-stage PLS-SEM and ANN analysis utilizing deep learning techniques can yield more comprehensive research findings than a PLS-SEM approach and (b) to identify variables that can forecast the intention to adopt cryptocurrency.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 16 May 2023

Eugene Cheng-Xi Aw, Garry Wei-Han Tan, Keng-Boon Ooi and Nick Hajli

The present study aims to propose a framework elucidating the attributes of mobile augmented reality (AR) shopping apps (i.e., spatial presence, perceived personalization and…

Abstract

Purpose

The present study aims to propose a framework elucidating the attributes of mobile augmented reality (AR) shopping apps (i.e., spatial presence, perceived personalization and perceived intrusiveness) and how they translate to downstream consumer-related outcomes (i.e., immersion, psychological ownership and stickiness to the retailer).

Design/methodology/approach

By conducting a questionnaire-based survey, 308 responses were collected, and the data were submitted to partial least square structural equation modeling (PLS-SEM) and artificial neural network (ANN) analyses.

Findings

A few important findings were generated from the present study. First, attributes of mobile augmented reality shopping apps (i.e., spatial presence, perceived personalization and perceived intrusiveness) influence stickiness to the retailer through immersion and consumer empowerment in serial. Second, immersion positively influences psychological ownership. Third, the optimum stimulation level moderates the relationship between spatial presence and immersion. Lastly, a post-hoc exploratory finding yielded by the multigroup analysis uncovered the moderating effect of gender.

Originality/value

This study offers a novel contribution to the smart retail literature by investigating the role of mobile AR shopping apps in predicting consumers' stickiness to the retailer. A holistic framework elucidating the serial mediating effect of immersion and consumer empowerment, and the moderating roles of optimum stimulation level and gender were validated.

Details

Internet Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1066-2243

Keywords

Article
Publication date: 24 January 2023

Yali Wang, Jian Zuo, Min Pan, Bocun Tu, Rui-Dong Chang, Shicheng Liu, Feng Xiong and Na Dong

Accurate and timely cost prediction is critical to the success of construction projects which is still facing challenges especially at the early stage. In the context of rapid…

Abstract

Purpose

Accurate and timely cost prediction is critical to the success of construction projects which is still facing challenges especially at the early stage. In the context of rapid development of machine learning technology and the massive cost data from historical projects, this paper aims to propose a novel cost prediction model based on historical data with improved performance when only limited information about the new project is available.

Design/methodology/approach

The proposed approach combines regression analysis (RA) and artificial neural network (ANN) to build a novel hybrid cost prediction model with the former as front-end prediction and the latter as back-end correction. Firstly, the main factors influencing the cost of building projects are identified through literature research and subsequently screened by principal component analysis (PCA). Secondly the optimal RA model is determined through multi-model comparison and used for front-end prediction. Finally, ANN is applied to construct the error correction model. The hybrid RA-ANN model was trained and tested with cost data from 128 completed construction projects in China.

Findings

The results show that the hybrid cost prediction model has the advantages of both RA and ANN whose prediction accuracy is higher than that of RA and ANN only with the information such as total floor area, height and number of floors.

Originality/value

(1) The most critical influencing factors of the buildings’ cost are found out by means of PCA on the historical data. (2) A novel hybrid RA-ANN model is proposed which proved to have the advantages of both RA and ANN with higher accuracy. (3) The comparison among different models has been carried out which is helpful to future model selection.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 February 2024

Aleena Swetapadma, Tishya Manna and Maryam Samami

A novel method has been proposed to reduce the false alarm rate of arrhythmia patients regarding life-threatening conditions in the intensive care unit. In this purpose, the…

Abstract

Purpose

A novel method has been proposed to reduce the false alarm rate of arrhythmia patients regarding life-threatening conditions in the intensive care unit. In this purpose, the atrial blood pressure, photoplethysmogram (PLETH), electrocardiogram (ECG) and respiratory (RESP) signals are considered as input signals.

Design/methodology/approach

Three machine learning approaches feed-forward artificial neural network (ANN), ensemble learning method and k-nearest neighbors searching methods are used to detect the false alarm. The proposed method has been implemented using Arduino and MATLAB/SIMULINK for real-time ICU-arrhythmia patients' monitoring data.

Findings

The proposed method detects the false alarm with an accuracy of 99.4 per cent during asystole, 100 per cent during ventricular flutter, 98.5 per cent during ventricular tachycardia, 99.6 per cent during bradycardia and 100 per cent during tachycardia. The proposed framework is adaptive in many scenarios, easy to implement, computationally friendly and highly accurate and robust with overfitting issue.

Originality/value

As ECG signals consisting with PQRST wave, any deviation from the normal pattern may signify some alarming conditions. These deviations can be utilized as input to classifiers for the detection of false alarms; hence, there is no need for other feature extraction techniques. Feed-forward ANN with the Lavenberg–Marquardt algorithm has shown higher rate of convergence than other neural network algorithms which helps provide better accuracy with no overfitting.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 9 February 2024

Heetae Yang, Yeram Cho and Sang-Yeal Han

This study develops a comprehensive research model and investigates the significant factors affecting positive marketing outcomes in the Metaverse through perceived social…

Abstract

Purpose

This study develops a comprehensive research model and investigates the significant factors affecting positive marketing outcomes in the Metaverse through perceived social benefits and trust.

Design/methodology/approach

The authors propose a new research model based on social exchange theory (SET) and examine the impact of cost and reward factors. Using 327 survey samples collected from current Metaverse users in South Korea, dual-stage analysis using Partial Least Squares Structural Equation Modeling (PLS-SEM) and an artificial neural network (ANN) were employed to test the study’s hypotheses.

Findings

The results showed that perceived social benefit and trust had significant mediating effects on marketing outcomes, such as loyalty to the seller, product/service attitude, and purchase intention. All antecedents, except perceived performance risk, had a crucial impact on the two mediators. The most interesting finding of this study is the positive influence of knowledge-seeking efforts on perceived social benefits.

Originality/value

This study is the first empirical research to examine the effectiveness of marketing in the Metaverse. It also proposes a new theoretical model based on SET to investigate users’ behavioral intentions regarding marketing in the Metaverse, and confirms its explanatory power. Moreover, the results of this study also offer suggestions to brands on how to market to consumers in the Metaverse.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of 288