Search results

1 – 10 of 23
To view the access options for this content please click here
Article
Publication date: 13 September 2011

Lynne Armitage, Ann Murugan and Hikari Kato

The purpose of this paper is to deepen understanding of what is working and what is not working within green workplace environments. The paper examines management and…

Abstract

Purpose

The purpose of this paper is to deepen understanding of what is working and what is not working within green workplace environments. The paper examines management and employee perceptions of their experiences of working in green workplace environments and assesses the effectiveness of such places.

Design/methodology/approach

Being the second stage of a longitudinal study, this paper relies on a data set derived from its survey of 31 management and 351 employee respondents occupying Green Building Council Australia Green Star‐rated offices for more than 12 months.

Findings

The green workplace is a great place to be, at least most of the time, but there is a discrepancy between the views of management who see greater benefits of the green workplace than their employees.

Research limitations/implications

By focussing on green buildings, there is no control to establish a benchmark. Hence, the next stage of the research is a comparable study of a non‐green data sample. Also to be tested is – whilst managers and employees overall report satisfaction with their green workplace, what is the norm?

Practical implications

The findings are useful for green building industry practitioners and for building owners and managers to maximise the benefits of owning and occupying green buildings by highlighting areas that may require particular attention in order to get it right. The results are particularly useful to support targeted efforts to meet the environmental aspects of the workspace needs of employees. This study aims to assist industry practitioners, owner and managers to learn from the experience of current occupiers and thereby assist the design and space management of office space in the future where such considerations will become increasingly important given the international concerns for improved resource management.

Originality/value

With international applicability, a large sample of office space users provides empirical evidence of what works/does not work within the green workplace, i.e. its strengths and weaknesses and provides a good reference point for similar studies in the future, leading to the establishment of clearer, more useful benchmarks of green building occupier satisfaction.

Details

Journal of Corporate Real Estate, vol. 13 no. 3
Type: Research Article
ISSN: 1463-001X

Keywords

To view the access options for this content please click here
Article
Publication date: 24 September 2019

Isaac Dinaharan, Ramaswamy Palanivel, Natarajan Murugan and Rudolf Frans Laubscher

Friction stir processing (FSP) as a solid-state process has the potential for the production of effective aluminum matrix composites (AMCs). In this investigation, various…

Abstract

Purpose

Friction stir processing (FSP) as a solid-state process has the potential for the production of effective aluminum matrix composites (AMCs). In this investigation, various ceramic particles including B4C, TiC, SiC, Al2O3 and WC were incorporated as the dispersed phase within AA6082 aluminum alloy by FSP. The wear rate of the composite is then investigated experimentally by making use of a design of experiments technique where wear rate is evaluated as the output parameter. The input parameters considered include tool rotational speed, traverse speed, groove width and ceramic particle type. An artificial neural network (ANN) simulation was then used to describe the wear rate of the surface composites. The weights of the network were adjusted to minimize the mean squared error using a feed forward back propagation technique. The effect of the individual input parameters on wear rate was then inferred from the ANN models. Trends are presented and related to the associated microstructures observed. The TiC infused AMC displayed the lowest wear rate whereas the Al2O3 infused AMC displayed the highest, within the scope of the current investigation. The paper aims to discuss these issues.

Design/methodology/approach

The paper used ANN for the research study.

Findings

The finding of this paper is that the wear rate of AA6063 aluminum surface composites is influenced remarkably by FSP parameters.

Originality/value

Original work of authors.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article
Publication date: 20 November 2020

Lydie Myriam Marcelle Amelot, Ushad Subadar Agathee and Yuvraj Sunecher

This study constructs time series model, artificial neural networks (ANNs) and statistical topologies to examine the volatility and forecast foreign exchange rates. The…

Abstract

Purpose

This study constructs time series model, artificial neural networks (ANNs) and statistical topologies to examine the volatility and forecast foreign exchange rates. The Mauritian forex market has been utilized as a case study, and daily data for nominal spot rate (during a time period of five years spanning from 2014 to 2018) for EUR/MUR, GBP/MUR, CAD/MUR and AUD/MUR have been applied for the predictions.

Design/methodology/approach

Autoregressive integrated moving average (ARIMA) and generalized autoregressive conditional heteroskedasticity (GARCH) models are used as a basis for time series modelling for the analysis, along with the non-linear autoregressive network with exogenous inputs (NARX) neural network backpropagation algorithm utilizing different training functions, namely, Levenberg–Marquardt (LM), Bayesian regularization and scaled conjugate gradient (SCG) algorithms. The study also features a hybrid kernel principal component analysis (KPCA) using the support vector regression (SVR) algorithm as an additional statistical tool to conduct financial market forecasting modelling. Mean squared error (MSE) and root mean square error (RMSE) are employed as indicators for the performance of the models.

Findings

The results demonstrated that the GARCH model performed better in terms of volatility clustering and prediction compared to the ARIMA model. On the other hand, the NARX model indicated that LM and Bayesian regularization training algorithms are the most appropriate method of forecasting the different currency exchange rates as the MSE and RMSE seemed to be the lowest error compared to the other training functions. Meanwhile, the results reported that NARX and KPCA–SVR topologies outperformed the linear time series models due to the theory based on the structural risk minimization principle. Finally, the comparison between the NARX model and KPCA–SVR illustrated that the NARX model outperformed the statistical prediction model. Overall, the study deduced that the NARX topology achieves better prediction performance results compared to time series and statistical parameters.

Research limitations/implications

The foreign exchange market is considered to be instable owing to uncertainties in the economic environment of any country and thus, accurate forecasting of foreign exchange rates is crucial for any foreign exchange activity. The study has an important economic implication as it will help researchers, investors, traders, speculators and financial analysts, users of financial news in banking and financial institutions, money changers, non-banking financial companies and stock exchange institutions in Mauritius to take investment decisions in terms of international portfolios. Moreover, currency rates instability might raise transaction costs and diminish the returns in terms of international trade. Exchange rate volatility raises the need to implement a highly organized risk management measures so as to disclose future trend and movement of the foreign currencies which could act as an essential guidance for foreign exchange participants. By this way, they will be more alert before conducting any forex transactions including hedging, asset pricing or any speculation activity, take corrective actions, thus preventing them from making any potential losses in the future and gain more profit.

Originality/value

This is one of the first studies applying artificial intelligence (AI) while making use of time series modelling, the NARX neural network backpropagation algorithm and hybrid KPCA–SVR to predict forex using multiple currencies in the foreign exchange market in Mauritius.

Details

African Journal of Economic and Management Studies, vol. 12 no. 1
Type: Research Article
ISSN: 2040-0705

Keywords

To view the access options for this content please click here
Article
Publication date: 20 April 2012

C. Velmurugan, R. Subramanian, S. Thirugnanam and B. Anandavel

The purpose of this paper is to produce Al6061 metal matrix composites reinforced with silicon carbide (SiC) and graphite particulates and study their wear behavior and…

Abstract

Purpose

The purpose of this paper is to produce Al6061 metal matrix composites reinforced with silicon carbide (SiC) and graphite particulates and study their wear behavior and also to develop artificial neural network model to predict the mass loss of hybrid composites.

Design/methodology/approach

The hybrid composites were produced by using stir casting process. The experiments were conducted based on the central composite rotatable design matrix using pin‐on‐disc wear testing machine. The set of data collected from the experimental values were used to train a back propagation (BP) learning algorithm with one hidden layer network. In artificial neural network (ANN) training module, four input vectors were used in the construction of proposed network namely, weight percentage of SiC particles, weight percentage of graphite particles, applied load and sliding distance. Mass loss was the output to be obtained from the proposed network. After training process, the test data collected from the experimental values were used to check the accuracy of proposed ANN model.

Findings

The results show that the well trained one hidden layer network have smaller training errors and much better generalization performance and can be successfully used for the prediction of mass loss of hybrid aluminium metal matrix composites.

Originality/value

In this paper the ANN method was adopted to predict the mass loss of hybrid composites. It was found that artificial neural network can be successfully used for prediction of mass loss of composites.

Details

Industrial Lubrication and Tribology, vol. 64 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 31 July 2019

Sree Ranjini K.S.

In recent years, the application of metaheuristics in training neural network models has gained significance due to the drawbacks of deterministic algorithms. This paper…

Abstract

Purpose

In recent years, the application of metaheuristics in training neural network models has gained significance due to the drawbacks of deterministic algorithms. This paper aims to propose the use of a recently developed “memory based hybrid dragonfly algorithm” (MHDA) for training multi-layer perceptron (MLP) model by finding the optimal set of weight and biases.

Design/methodology/approach

The efficiency of MHDA in training MLPs is evaluated by applying it to classification and approximation benchmark data sets. Performance comparison between MHDA and other training algorithms is carried out and the significance of results is proved by statistical methods. The computational complexity of MHDA trained MLP is estimated.

Findings

Simulation result shows that MHDA can effectively find the near optimum set of weight and biases at a higher convergence rate when compared to other training algorithms.

Originality/value

This paper presents MHDA as an alternative optimization algorithm for training MLP. MHDA can effectively optimize set of weight and biases and can be a potential trainer for MLPs.

Details

Engineering Computations, vol. 36 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article
Publication date: 7 August 2018

P. Suresh and T. Poongodi

In the current scenario, new materials are gaining popularity due to higher specific properties of strength and stiffness, increase in wear resistance, dimensional…

Abstract

Purpose

In the current scenario, new materials are gaining popularity due to higher specific properties of strength and stiffness, increase in wear resistance, dimensional stability at higher temperature, etc. Subsequently, the need for precise machining has also been increased enormously. The purpose of this paper is to study the surface roughness during the turning of Al-10%SiC and Al-5%SiC-5%Gr composites under different cutting conditions.

Design/methodology/approach

Artificial neural network (ANN) has been effectively employed in solving problems with effortless computation in the areas such as fault diagnosis, process identification, property estimation, data smoothing and error filtering, product design and development, optimisation and estimation of activity coefficients. Response surface method is also used to analyse the problems involving a number of input parameters and their corresponding relationship between one or more measured dependent responses. Using Design Expert.8 evaluation software package, a simpler and more efficient statistical RSM model has been designed. RSM models are created by using 27 experimental data measurements obtained from different turning conditions of aluminium alloy composites.

Findings

In this work, the surface roughness during turning of Al-10%SiC and Al-5%SiC-5%Gr composites under different cutting conditions has been studied. The surface roughness value is proportional with the increase in feed rate and depth of cut while inversely proportional with the cutting speed. In all turning conditions, Al-10%SiC composite has lower surface roughness values than Al-5%SiC-5%Gr hybrid composite. An ANN and response surface models have been developed to predict the surface roughness of machined surface. The experimental results concur well with predicted models.

Originality/value

In the present trend, new materials are gaining popularity due to higher specific properties of strength and stiffness, increase in wear resistance, dimensional stability at higher temperature, etc. Subsequently, the need for precise machining has also been increased enormously. In this work, the surface roughness during turning of Al-10%SiC and Al-5%SiC-5%Gr composites under different cutting conditions has been studied.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Content available
Article
Publication date: 31 October 2019

Veerapazham Murugan and Murugan Suresh Kumar

It is known that the iterative roots of continuous functions are not necessarily unique, if it exist. In this note, by introducing the set of points of coincidence, we…

Abstract

It is known that the iterative roots of continuous functions are not necessarily unique, if it exist. In this note, by introducing the set of points of coincidence, we study the iterative roots of order preserving homeomorphisms. In particular, we prove a characterization of identical iterative roots of an order preserving homeomorphism using the points of coincidence of functions.

Details

Arab Journal of Mathematical Sciences, vol. 26 no. 1/2
Type: Research Article
ISSN: 1319-5166

Keywords

To view the access options for this content please click here
Article
Publication date: 10 June 2021

Jashanpreet Singh

The purpose of this paper is to carry out erosion wear investigation on high-velocity oxy-fuel (HVOF)-deposited 86WC-10Co4Cr and synergistic Ni/Chromia powder (i.e…

Abstract

Purpose

The purpose of this paper is to carry out erosion wear investigation on high-velocity oxy-fuel (HVOF)-deposited 86WC-10Co4Cr and synergistic Ni/Chromia powder (i.e. 80Ni-20Cr2O3) on AISI 316L.

Design/methodology/approach

Design of experiments-artificial neural network (DOE-ANN) methodology was adopted to calculate the erosion wear. Taguchi’s orthogonal array L16 (42) was used to perform set-of-erosion experiments followed by lower-the-better rule. The artificial neural network (ANN) model is used on erosion wear data obtained from the experiments.

Findings

Experimental results indicate that 86WC-10Co4Cr provided better erosion wear resistance as compared to Ni/Chromia. The erosion wear of 86WC-10Co4Cr and synergistic Ni/Chromia coatings increases with an increase in time duration, solid concentration and time. The magnitude of erosion generated by ashes was comparatively lower than sand. The arithmetic mean roughness (Ra) of finished AISI 316L, 86WC-10Co4Cr and Ni/Chromia coating was found as 0.46 ± 0.13, 6.50 ± 0.16 and 7.04 ± 0.23 µm, respectively. Surface microhardness of AISI 316L, 86WC-10Co4Cr and Ni/Chromia coating was found as 197 ± 18, 1,156 ± 18 and 1,021± 21 HV, respectively.

Practical implications

The present results can be useful for estimation of erosion wear in slurry pumps used in mining industry for the conveying of sand and in thermal power plants for the conveying of ashes to the dyke area.

Originality/value

The erosion wear of HVOF-sprayed 86WC-10Co4Cr and Synergistic Ni/Chromia powders was studied experimentally as well as predicted by the ANN model, and wear mechanisms are well discussed by scanning electron micrographs.

Details

Industrial Lubrication and Tribology, vol. 73 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 24 November 2020

Sakthivel Murugan R. and Vinodh S.

This paper aims to optimize the process parameters of the fused deposition modelling (FDM) process using the Grey-based Taguchi method and the results to be verified based…

Abstract

Purpose

This paper aims to optimize the process parameters of the fused deposition modelling (FDM) process using the Grey-based Taguchi method and the results to be verified based on a technique for order preference by similarity to ideal solution (TOPSIS) and analytical hierarchy process (AHP) calculation.

Design/methodology/approach

The optimization of process parameters is gaining a potential role to develop robust products. In this context, this paper presents the parametric optimization of the FDM process using Grey-based Taguchi, TOPSIS and AHP method. The effect of slice height (SH), part fill style (PFS) and build orientation (BO) are investigated with the response parameters machining time, surface roughness and hardness (HD). Multiple objective optimizations were performed with weights of w1 = 60%, w2 = 20% and w3 = 20%. The significance of the process parameters over response parameters is identified through analysis of variance (ANOVA). Comparisons are made in terms of rank order with respect to grey relation grade (GRG), relative closeness and AHP index values. Response table, percentage contributions of process parameters for both GRG and TOPSIS evaluation are done.

Findings

The optimum factor levels are identified using GRG via the Grey Taguchi method and TOPSIS via relative closeness values. The optimized factor levels are SH (0.013 in), PFS (solid) and BO (45°) using GRG and SH (0.013 in), PFS (sparse-low density) and BO (45°) using TOPSIS relative closeness value. SH has higher significance in both Grey relational analysis and TOPSIS which were analysed using ANOVA.

Research limitations/implications

In this research, the multiple objective optimizations were done on an automotive component using GRG, TOPSIS and AHP which showed a 27% similarity in their ranking order among the experiments. In the future, other advanced optimization techniques will be applied to further improve the similarity in ranking order.

Practical implications

The study presents the case of an automotive component, which illustrates practical relevance.

Originality/value

In several research studies, optimization was done on the standard test specimens but not on a real-time component. Here, the multiple objective optimizations were applied to a case automotive component using Grey-based Taguchi and verified with TOPSIS. Hence, an effort has been taken to find optimum process parameters on FDM, for achieving smooth, hardened automotive components with enhanced printing time. The component can be explored as a replacement for the existing product.

To view the access options for this content please click here
Article
Publication date: 16 March 2020

Meimei Liu, Yicha Zhang, Wenjie Dong, Zexin Yu, Sifeng Liu, Samuel Gomes, Hanlin Liao and Sihao Deng

This paper presents the application of grey modeling for thermal spray processing parameter analysis in less data environment.

Abstract

Purpose

This paper presents the application of grey modeling for thermal spray processing parameter analysis in less data environment.

Design/methodology/approach

Based on processing knowledge, key processing parameters of thermal spray process are analyzed and preselected. Then, linear and non-linear grey modeling models are integrated to mine the relationships between different processing parameters.

Findings

Model A reveals the linear correlation between the HVOF process parameters and the characterization of particle in-flight with average relative errors of 9.230 percent and 5.483 percent for velocity and temperature.

Research limitations/implications

The prediction accuracies of coatings properties vary, which means that there exists more complex non-linear relationship between the identified input parameters and coating results, or more unexpected factors (e.g. factors from material side) should be further investigated.

Practical implications

According to the modeling case in this paper, method has potential to deal with other diverse modeling problems in different industrial applications where challenge to collecting large quantity of data sets exists.

Originality/value

It is the first time to apply grey modeling for thermal spray processing where complicated relationships among processing parameters exist. The modeling results show reasonable results to experiment and existing processing knowledge.

Details

Grey Systems: Theory and Application, vol. 10 no. 3
Type: Research Article
ISSN: 2043-9377

Keywords

1 – 10 of 23