Search results

1 – 10 of over 1000
Article
Publication date: 9 September 2013

Manfred Kaltenbacher, Adrian Volk and Michael Ertl

The modeling of magnetostrictive effects is a topic of intensive research. The authors' goal is the precise modeling and numerical simulation of the magnetic field and resulting…

Abstract

Purpose

The modeling of magnetostrictive effects is a topic of intensive research. The authors' goal is the precise modeling and numerical simulation of the magnetic field and resulting mechanical vibrations caused by magnetostriction along the joint regions of electric transformers.

Design/methodology/approach

The authors apply the finite element (FE) method to efficiently solve the arising coupled system of partial differential equations describing magnetostriction. Hereby, they fully take the anisotropic behavior of the material into account, both in the computation of the nonlinear electromagnetic field as well as the induced magnetostrictive strains. To support their material models, the authors measure the magnetic as well as the mechanical hysteresis curves of the grain-oriented electrical steel sheets with different orientations (w.r.t the rolling direction). From these curves they then extract for each orientation the corresponding commutation curve, so that the hysteretic behavior is simplified to a nonlinear one.

Findings

The numerical simulations show strong differences both in the magnetic field as well as mechanical vibrations when comparing this newly developed anisotropic model to an isotropic one, which just uses measured curves in rolling direction of the steel sheets. Therefore, a realistic modeling of the magnetostrictive behavior, especially for grain-oriented electrical steel as used in transformers, needs to take into account the anisotropic material behavior.

Originality/value

The authors have developed an enhanced material model for describing magnetostrictive effects along the joint regions of electric transformers, which fully considers the anisotropic material behavior. This model has been integrated into a FE scheme to numerically simulate the mechanical vibrations in transformer cores caused by magnetostriction.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 February 1985

D.R.J. Owen and Guo Qiang Liu

An elasto‐viscoplastic analysis of anisotropic plates and shells is undertaken by means of the finite element displacement method. A thick shell formulation accounting for shear…

Abstract

An elasto‐viscoplastic analysis of anisotropic plates and shells is undertaken by means of the finite element displacement method. A thick shell formulation accounting for shear deformation is considered and a layered approach is adopted in order to model property changes through the shell thickness. In order to avoid ‘locking’ behaviour as the shell thickness is reduced, the nine‐node Lagrangian and heterosis elements are introduced into the present model. Viscoplastic yielding is based on the Huber—Mises criterion extended by Hill for anisotropic materials. Time integration of the strain rate equations is accomplished by both explicit and implicit algorithms and special consideration is given to the evaluation of the viscoplastic strain increment for anisotropic situations. The computer code developed is demonstrated by application to a range of numerical examples.

Details

Engineering Computations, vol. 2 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 2 October 2017

Xuepeng Zhan, Jianjun Wu, Mingzhi Wang, Yu Hui, Hongfei Wu, Qi Shang and Ruichao Guo

This paper aims to first apply more advanced anisotropic yield criterions as Yld91 and Yld2004 to spherical indentation simulations, and investigate plastic anisotropy identified…

Abstract

Purpose

This paper aims to first apply more advanced anisotropic yield criterions as Yld91 and Yld2004 to spherical indentation simulations, and investigate plastic anisotropy identified from indentation simulations following different yield criterions (Hill48, Yld91, Yld2004) to discover laws. It also aims to compare the difference in plastic anisotropy identified from indentation on three yield criterions and evaluate the applicability of plastic anisotropy.

Design/methodology/approach

This paper uses indentation simulations on different yield criterions to identify plastic anisotropy. First, the trust-region techniques based on the nonlinear least-squares method are used to determine anisotropy coefficients of Yld91 and Yld2004. Then, Yld91 and Yld2004 are implemented into ABAQUS software using user-defined material (UMAT) subroutines with the proposed universal structure. Finally, through considering comprehensively the key factors, the locations of the optimal data acquisition points in indentation simulations on different yield criterions are determined. And, the identified stress–strain curves are compared with experimental data.

Findings

This paper discovers that indentation on Yld2004 is able to fully identify difference in equivalent plastic strain between 0° and 90° directions when indentation depth ht is relatively smaller. And, this research demonstrates conclusively that plastic anisotropy identified from indentation on Yld2004 and Yld91 is more applicable at larger strains than that on Hill48, and that on Yld2004 is more applicable than that on Yld91, overall. In addition, the method on the determination of the locations of the optimal data acquisition points is demonstrated to be also valid for anisotropic material.

Originality/value

This paper first investigates plastic anisotropic properties and laws identified from indentation simulations following more advanced anisotropic yield criterions and provides reference for later research.

Details

Engineering Computations, vol. 34 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1996

M.L. Boubakar, L. Boulmane and J.C. Gelin

Addresses the computational aspects involved in the numerical simulation of sheet stamping processes. Focuses on some numerical aspects of the intrinsic complexity of these…

Abstract

Addresses the computational aspects involved in the numerical simulation of sheet stamping processes. Focuses on some numerical aspects of the intrinsic complexity of these problems, the first of which is the necessity to take into account properly membrane and bending effects. Presents a well‐adapted shell element. The second aspect concerns the description and the implementation of the initial orthotropic plastic behaviour for sheet metal parts, based on a formulation in a rotating frame using the initial microstructure rotation. The stress calculation algorithm is based on a particular implementation of the elastic predictor‐plastic corrector method. The last aspect concerns the solution procedures with a particular development concerning the treatment of the blankholder load as a constraint. A set of computational results validated with experiments prove the accuracy of the proposed approach in solving stamping problems.

Details

Engineering Computations, vol. 13 no. 2/3/4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 September 1999

Carlo Ragusa and Maurizio Repetto

The implementation of a vector Preisach model for the modelling of anisotropic hysteretic soft magnetic materials is outlined. Some comparisons with measurements on alternate and…

Abstract

The implementation of a vector Preisach model for the modelling of anisotropic hysteretic soft magnetic materials is outlined. Some comparisons with measurements on alternate and rotational magnetic field excitations are shown. The hysteresis model is inserted inside a two‐dimensional finite element solver formulated in terms of magnetic vector potential and nonlinear solution is handled by means of the fixed point method with H‐scheme. Results obtained on a two‐dimensional geometry are described and discussed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 18 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 July 2017

Peng Wang, Hocine Chalal and Farid Abed-Meraim

The purpose of this paper is to propose two linear solid-shell finite elements, a six-node prismatic element denoted SHB6-EXP and an eight-node hexahedral element denoted…

Abstract

Purpose

The purpose of this paper is to propose two linear solid-shell finite elements, a six-node prismatic element denoted SHB6-EXP and an eight-node hexahedral element denoted SHB8PS-EXP, for the three-dimensional modeling of thin structures in the context of explicit dynamic analysis.

Design/methodology/approach

These two linear solid-shell elements are formulated based on a purely three-dimensional (3D) approach, with displacements as the only degrees of freedom. To prevent various locking phenomena, a reduced-integration scheme is used along with the assumed-strain method. The resulting formulations are computationally efficient, as only a single layer of elements with an arbitrary number of through-thickness integration points is required to model 3D thin structures.

Findings

Via the VUEL user-element subroutines, the performance of these elements is assessed through a set of selective and representative dynamic elastoplastic benchmark tests, impact-type problems and deep drawing processes involving complex non-linear loading paths, anisotropic plasticity and double-sided contact. The obtained numerical results demonstrate good performance of the SHB-EXP elements in the modeling of 3D thin structures, with only a single element layer and few integration points in the thickness direction.

Originality/value

The extension of the SHB-EXP solid-shell formulations to large-strain anisotropic plasticity enlarges their application range to a wide variety of dynamic elastoplastic problems and sheet metal forming simulations. All simulation results reveal that the numerical strategy adopted in this paper can efficiently prevent the various locking phenomena that commonly occur in the 3D modeling of thin structural problems.

Details

Engineering Computations, vol. 34 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 June 2013

L. Rickenbacher, T. Etter, S. Hövel and K. Wegener

Selective laser melting (SLM) is being investigated by Alstom and IWF due to its flexibility, cost‐ and lead‐time reduction potential for reconditioning of hot gas path components…

4319

Abstract

Purpose

Selective laser melting (SLM) is being investigated by Alstom and IWF due to its flexibility, cost‐ and lead‐time reduction potential for reconditioning of hot gas path components used in today's heavy‐duty gas turbines. This paper aims to address this issue.

Design/methodology/approach

Tensile tests as well as relaxation and creep tests were carried out to assess SLM processed IN738LC for use in high temperature applications. To evaluate potential anisotropic material behaviour resulting from the layer‐wise build up process, all specimens were built in two directions: parallel and perpendicular to the build direction, respectively. Furthermore, extensive metallurgical investigations were made to analyse the chemical homogeneity as well as the correlation between microstructure and high temperature properties of SLM processed IN738LC.

Findings

Tensile tests showed that strength properties superior to cast IN738LC can be achieved by processing this material by SLM alternatively. Due to differences in grain size, grain orientation as well as γ′size and morphology the relaxation behaviour of SLM specimens is inferior compared to cast material. However, creep tests have shown that values within the lower scatter band of cast material can still be achieved along the build direction.

Originality/value

Very limited knowledge exists regarding the processing of γ′precipitation‐strengthened nickel‐base superalloys by SLM and the resulting high temperature material properties. Layered manufacturing and any lack‐of‐fusion porosity influences them as well as high temperature gradients, occurring during the process. This article presents the latest insights from material testing of selective laser molten IN738LC at elevated temperatures.

Open Access
Article
Publication date: 26 July 2023

Jorge Manuel Mercado-Colmenero, M. Dolores La Rubia, Elena Mata-García, Moisés Rodriguez-Santiago and Cristina Martin-Doñate

Because of the anisotropy of the process and the variability in the quality of printed parts, finite element analysis is not directly applicable to recycled materials manufactured…

Abstract

Purpose

Because of the anisotropy of the process and the variability in the quality of printed parts, finite element analysis is not directly applicable to recycled materials manufactured using fused filament fabrication. The purpose of this study is to investigate the numerical-experimental mechanical behavior modeling of the recycled polymer, that is, recyclable polyethylene terephthalate (rPET), manufactured by a deposition FFF process under compressive stresses for new sustainable designs.

Design/methodology/approach

In all, 42 test specimens were manufactured and analyzed according to the ASTM D695-15 standards. Eight numerical analyzes were performed on a real design manufactured with rPET using Young's compression modulus from the experimental tests. Finally, eight additional experimental tests under uniaxial compression loads were performed on the real sustainable design for validating its mechanical behavior versus computational numerical tests.

Findings

As a result of the experimental tests, rPET behaves linearly until it reaches the elastic limit, along each manufacturing axis. The results of this study confirmed the design's structural safety by the load scenario and operating boundary conditions. Experimental and numerical results show a difference of 0.001–0.024 mm, allowing for the rPET to be configured as isotropic in numerical simulation software without having to modify its material modeling equations.

Practical implications

The results obtained are of great help to industry, designers and researchers because they validate the use of recycled rPET for the ecological production of real-sustainable products using MEX technology under compressive stress and its configuration for numerical simulations. Major design companies are now using recycled plastic materials in their high-end designs.

Originality/value

Validation results have been presented on test specimens and real items, comparing experimental material configuration values with numerical results. Specifically, to the best of the authors’ knowledge, no industrial or scientific work has been conducted with rPET subjected to uniaxial compression loads for characterizing experimentally and numerically the material using these results for validating a real case of a sustainable industrial product.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3517

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 16 November 2010

P. Fulmek, P. Haumer, H. Wegleiter and B. Schweighofer

The purpose of this paper is to present a model to describe the nonlinear and hysteretic properties of ferromagnetic materials.

Abstract

Purpose

The purpose of this paper is to present a model to describe the nonlinear and hysteretic properties of ferromagnetic materials.

Design/methodology/approach

The energetic model of ferromagnetic hysteresis evolved from some well‐known concepts in ferromagnetism in the last years. The magnetisation process is calculated from energy balance and statistical domain behaviour. Based on vectorial, anisotropic, multi‐domain considerations an isotropic, scalar model is derived, which gives quite simple equations to describe the nonlinear, hysteretic magnetisation process.

Findings

The presented simulations for steel samples and ferrite samples show very nice correspondence with measurements.

Originality/value

The scalar model seems to be especially suited for integration into finite element modelling or into simulations of electro‐magnetic circuits.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 1000