Search results

1 – 2 of 2
Article
Publication date: 13 February 2024

Dinesh Kumar Kushwaha, Dilbagh Panchal and Anish Kumar Sachdeva

An integrated intuitionistic fuzzy (IF) modelling-based framework for examining the performance analysis of a packaging unit (PU) in three different stages has been proposed.

35

Abstract

Purpose

An integrated intuitionistic fuzzy (IF) modelling-based framework for examining the performance analysis of a packaging unit (PU) in three different stages has been proposed.

Design/methodology/approach

For the series and parallel configuration of PU, a mathematical model based on the intuitionistic fuzzy Lambda–Tau (IFLT) approach was developed in order to calculate various reliability parameters at various spreads. For determining membership and non-membership function-based reliability parameters for the top event, AND/OR gate transitions expression was employed.

Findings

For 15%–30% spread, unit’s availability for the membership function falls by 0.006442%, and it falls even more by 0.014907% with an increase in spread from 30% to 45%. In contrast, for 15%–30% spread, the availability of non-membership function-based systems reduces by 0.007491% and further diminishes. Risk analysis has presented applying an emerging approach called intuitionistic fuzzy failure mode and effect analysis (IFFMEA). For each of the stated failure causes, the output values of the intuitionistic fuzzy hybrid weighted Euclidean distance (IFHWED)-based IFFMEA have been tabulated. Failure causes like HP1, MT6, FB9, EL16, DR23, GR27, categorized under subsystems, namely hopper, motor, fluidized bed dryer, distributor, grader and bin, respectively, with corresponding IFFMEA output scores 1.0975, 1.0190, 0.8543, 1.0228, 0.9026, 1.0021, were the most critical one to contribute in the system’s failure.

Research limitations/implications

The limitation of the proposed framework lies in the fact that the results obtained for both reliability and risk aspects mainly depend on the correctness of raw data provided by the experts. Also, an approximate model of PU is obtained from plant experts to carry performance analysis, and hence more attention is required in constructing the model. Under IFLT, reliability parameters of PU have been calculated at various spreads to study and analyse the failure behaviour of the unit for both membership and non-membership function in the IFS of [0.6,0.8]. For both membership- and non-membership-based results, availability of the considered system shows decreasing trend. To improve the performance of the considered system, risk assessment was carried using IFFMEA technique, ranking all the critical failure causes against IFHWED score value, on which more attention should be paid so as to avoid sudden failure of unit.

Social implications

The livelihood of millions of farmers and workers depends on sugar industries. So perpetual running of these industries is very important from this viewpoint. On the basis of findings of reliability parameters, the maintenance manager could frame a correct maintenance policy for long-run availability of the sugar mills. This long-run availability will generate revenue, which, in turn, will ensure the livelihood of the farmers.

Originality/value

Mathematical modelling of the considered unit has been done applying basic expressions of AND/OR gate. IFTOPSIS approach has been implemented for ranking result comparison obtained under IFFMEA approach. Eventually, sensitivity analysis was also presented to demonstrate the stability of ranking of failure causes of PU.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 11 January 2024

Abdul Samad Rafique, Adnan Munir, Numan Ghazali, Muhammad Naveed Ahsan and Aqeel Ahsan Khurram

The purpose of this study was to develop a correlation between the properties of acrylonitrile butadiene styrene parts 3D printed by material extrusion (MEX) process.

Abstract

Purpose

The purpose of this study was to develop a correlation between the properties of acrylonitrile butadiene styrene parts 3D printed by material extrusion (MEX) process.

Design/methodology/approach

The two MEX parameters and their values have been selected by design of experiment method. Three properties of MEX parts, i.e. strength (tensile and three-point bending), surface roughness and the dimensional accuracy, are studied at different build speeds (35 mm/s, 45 mm/s and 55 mm/s) and the layer heights (0.06 mm, 0.10 mm and 0.15 mm).

Findings

The results show that tensile strength and three-point bending strength both increase with the decrease in build speed and the layer height. The artifact selected for dimensional accuracy test shows higher accuracy of the features when 3D printed with 0.06 mm layer height at 35 mm/s build speed as compared to those of higher layer heights and build speeds. The optical images of the 3D-printed specimen reveal that lower build speed and the layer height promote higher inter-layer diffusion that has the effect of strong bonding between the layers and, as a result, higher strength of the specimen. The surface roughness values also have direct relation with the build speed and the layer height.

Originality/value

The whole experiments demonstrate that the part quality, surface roughness and the mechanical strength are correlated and depend on the build speed and the layer height.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Year

Last month (2)

Content type

1 – 2 of 2