Search results

1 – 10 of over 54000
Article
Publication date: 14 June 2019

Abdurra’uf M. Gora, Jayaprakash Jaganathan, M.P. Anwar and H.Y. Leung

Advanced fibre-reinforced polymer (FRP) composites have been increasingly used over the past two decades for strengthening, upgrading and restoring degraded civil engineering…

Abstract

Purpose

Advanced fibre-reinforced polymer (FRP) composites have been increasingly used over the past two decades for strengthening, upgrading and restoring degraded civil engineering infrastructure. Substantial experimental investigations have been conducted in recent years to understand the compressive behaviour of FRP-confined concrete columns. A considerable number of confinement models to predict the compressive behaviour of FRP-strengthened concrete columns have been developed from the results of these experimental investigations. The purpose of this paper is to present a comprehensive review of experimental investigations and theoretical models of circular and non-circular concrete columns confined with FRP reinforcement.

Design/methodology/approach

The paper reviews previous experimental test results on circular and non-circular concrete columns confined with FRP reinforcement under concentric and eccentric loading conditions and highlights the behaviour and mechanics of FRP confinement in these columns. The paper also reviews existing confinement models for concrete columns confined with FRP composites in both circular and non-circular sections.

Findings

This paper demonstrates that the performance and effectiveness of FRP confinement in concrete columns have been extensively investigated and proven effective in enhancing the structural performance and ductility of strengthened columns. The strength and ductility enhancement depend on the number of FRP layers, concrete compressive strength, corner radius for non-circular columns and intensity of load eccentricity for eccentrically loaded columns. The impact of existing theoretical models and directions for future research are also presented.

Originality/value

Potential researchers will gain insight into existing experimental and theoretical studies and future research directions.

Details

World Journal of Engineering, vol. 16 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 October 2018

Naveed Alam, Ali Nadjai, Chrysanthos Maraveas, Konstantinos Tsarvdaridis and Charles Kahanji

The purpose of this study is to investigate the effect of the airgap on thermal behaviour and structural response of fabricated slim floor beams (FSFBs) in fire.

Abstract

Purpose

The purpose of this study is to investigate the effect of the airgap on thermal behaviour and structural response of fabricated slim floor beams (FSFBs) in fire.

Design/methodology/approach

A detailed analytical model is established and validated by replicating the response of FSFBs. The validated finite element modelling method is then used to perform sensitivity analysis. First, the influence of the airgap presence is analysed, and later, the effect of the airgap size on thermal behaviour and structural response of FSFBs at elevated temperatures is investigated.

Findings

Results from the study demonstrate that the presence of the airgap has a considerable influence on their thermal behaviour and structural response of FSFBs. The size of the airgap, however, has no significant influence on their thermal and structural response in fire.

Originality/value

No investigations, experimental or analytical, are available in literature addressing the effect of airgap on the structural response of FSFBs in fire. The presence of airgap is helpful and beneficial; hence, the findings of this research can be used to develop designs for structural members with airgap as an efficient and inexpensive way to improve their response in fire.

Details

Journal of Structural Fire Engineering, vol. 10 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 19 November 2021

Łukasz Knypiński

The purpose of this paper is to execute the efficiency analysis of the selected metaheuristic algorithms (MAs) based on the investigation of analytical functions and investigation

1218

Abstract

Purpose

The purpose of this paper is to execute the efficiency analysis of the selected metaheuristic algorithms (MAs) based on the investigation of analytical functions and investigation optimization processes for permanent magnet motor.

Design/methodology/approach

A comparative performance analysis was conducted for selected MAs. Optimization calculations were performed for as follows: genetic algorithm (GA), particle swarm optimization algorithm (PSO), bat algorithm, cuckoo search algorithm (CS) and only best individual algorithm (OBI). All of the optimization algorithms were developed as computer scripts. Next, all optimization procedures were applied to search the optimal of the line-start permanent magnet synchronous by the use of the multi-objective objective function.

Findings

The research results show, that the best statistical efficiency (mean objective function and standard deviation [SD]) is obtained for PSO and CS algorithms. While the best results for several runs are obtained for PSO and GA. The type of the optimization algorithm should be selected taking into account the duration of the single optimization process. In the case of time-consuming processes, algorithms with low SD should be used.

Originality/value

The new proposed simple nondeterministic algorithm can be also applied for simple optimization calculations. On the basis of the presented simulation results, it is possible to determine the quality of the compared MAs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 April 2023

Wanderson Ferreira dos Santos, Ayrton Ribeiro Ferreira and Sergio Persival Baroncini Proença

The present paper aims to explore a computational homogenisation procedure to investigate the full geometric representation of yield surfaces for isotropic porous ductile media…

Abstract

Purpose

The present paper aims to explore a computational homogenisation procedure to investigate the full geometric representation of yield surfaces for isotropic porous ductile media. The effects of cell morphology and imposed boundary conditions are assessed. The sensitivity of the yield surfaces to the Lode angle is also investigated in detail.

Design/methodology/approach

The microscale of the material is modelled by the concept of Representative Volume Element (RVE) or unit cell, which is numerically simulated through three-dimensional finite element analyses. Numerous loading conditions are considered to create complete yield surfaces encompassing high, intermediate and low triaxialities. The influence of cell morphology on the yield surfaces is assessed considering a spherical cell with spherical void and a cubic RVE with spherical void, both under uniform strain boundary condition. The use of spherical cell is interesting as preferential directions in the effective behaviour are avoided. The periodic boundary condition, which favours strain localization, is imposed on the cubic RVE to compare the results. Small strains are assumed and the cell matrix is considered as a perfect elasto-plastic material following the von Mises yield criterion.

Findings

Different morphologies for the cell imply in different yield conditions for the same load situations. The yield surfaces in correspondence to periodic boundary condition show significant differences compared to those obtained by imposing uniform strain boundary condition. The stress Lode angle has a strong influence on the geometry of the yield surfaces considering low and intermediate triaxialities.

Originality/value

The exhaustive computational study of the effects of cell morphologies and imposed boundary conditions fills a gap in the full representation of the flow surfaces. The homogenisation-based strategy allows us to further investigate the influence of the Lode angle on the yield surfaces.

Details

Engineering Computations, vol. 40 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 2004

Jens Kleemann and Mathias Woydt

In a high temperature tribometer, stationary carbon has been tested against different rotating ceramics (SiC, Si3N4, Al2O3, WC‐6Ni, MgO‐ZrO2, (Ti, Mo)(C, N)) and stainless steel…

1377

Abstract

In a high temperature tribometer, stationary carbon has been tested against different rotating ceramics (SiC, Si3N4, Al2O3, WC‐6Ni, MgO‐ZrO2, (Ti, Mo)(C, N)) and stainless steel (DIN 1.4876). The rotating discs were grinded, polished and/or lapped. For most material combinations, the wear morphology is known from available literature. A transfer film with a typical wear pattern was found on the rotating disc. The combination of antimony graphite EK3245 against MgO‐ZrO2 did not form carbonaceous transfer layer. Through advanced variation of the roughness up to Rpk=0.011 μm, the wear rate has been reduced to Kv ≈ 3.5×10−8 mm3/N m at a stable coefficient of friction in a “millirange” of μ∼0.008 for a sliding distance of 20.000 m.

Details

Industrial Lubrication and Tribology, vol. 56 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 December 2004

M. Zafar and B.J. Alappat

Unfortunately in India, most landfills are located along the banks of rivers flowing through the cities. The interaction of two big, diverse and delicate ecological systems …

1738

Abstract

Unfortunately in India, most landfills are located along the banks of rivers flowing through the cities. The interaction of two big, diverse and delicate ecological systems – rivers and landfills – has been investigated in this paper. During 2000, the estimated quantity of waste generation was more than 9,000 tons per day. This is one of the biggest sources of environmental degradation in Delhi, India's capital. It contributes to river pollution in a significant way through landfill leachate and runoff, especially during the rainy season. Since the 1950s over 12 large landfills have been packed with all sorts of non‐biodegradable and toxic wastes from Delhi. The area covered by landfills is at least 1 percent (14.83 sq.km) of Delhi's total area. All the landfill sites except Tilak Nagar, Hastal and Chattarpur are located close (0‐6 km) to the river Yamuna. Further, these landfills are not engineered sanitary landfills and the waste is dumped at open sites without proper compaction. A high mountain of waste can be seen at all landfill sites without a cover. The leachate produced by landfills finally percolates to the porous ground surface at the landfills or finds its way to nearby drains. A large portion of landfill leachate and runoff produced by these landfill sites finally reaches the Yamuna through ground water flow or surface water flow through the drains. The results of analysis by investigations and environmental mapping during the study clearly indicate that river water quality is affected by the presence of landfill locations, i.e. landfill leachate and landfill surface runoff.

Details

Management of Environmental Quality: An International Journal, vol. 15 no. 6
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 25 June 2019

Naveed Alam, Ali Nadjai, Olivier Vassart and Francois Hanus

In recent times, the use of steel sections with web openings has become common as slim floor beams because they offer a reduction in weight of the steelwork, accommodate services…

Abstract

Purpose

In recent times, the use of steel sections with web openings has become common as slim floor beams because they offer a reduction in weight of the steelwork, accommodate services within the floor depth and provide the composite action. The composite action in these beams is achieved either through the concrete dowels or through concrete plugs. Though these web openings offer several benefits in slim floor beams, they induce the material discontinuity in the steel web, which may affect their shear capacity and/or thermal behaviour. The purpose of this study is to investigate the thermal behaviour of slim floor beams with web openings in fire.

Design/methodology/approach

This research presents findings from experimental and analytical investigations conducted to study the thermal behaviour of slim floor beams with web openings in fire. For this purpose, an experimental investigation was conducted, which shows that the presence of web openings has a major influence on temperature development across the steel section as well as along the span of these beams. The behaviour of the tested slim floor beam is validated using finite element modelling. The validated finite element model is then used to conduct a sensitivity study to analyse the influence of different opening spacings, sizes and shapes on the thermal performance of slim floor beams in fire.

Findings

Test results show that the presence of web openings has a major influence on temperature development across the steel section as well as along the span of these beams. Temperatures on the web below the openings are found to be higher as compared to those recorded on the adjacent solid steel web. It is also observed that temperatures on the steel web above the openings are lesser than those on the adjacent solid steel web. Parametric studies conducted using the verified analytical modelling methods show that different opening spacings, sizes and shapes have a variable impact on the thermal behaviour of slim floor beams in fire. Closely spaced and larger opening sizes were found to have a more severe influence on their thermal behaviour in fire as compared to widely spaced and smaller openings. It was also found that the behaviour of these beams is influenced by the shape of the openings with rectangular openings resulting in more severe thermal distributions as compared to circular openings.

Originality/value

The findings from this research study are highly valuable as they contribute to the existing knowledge database. There is a lack of experimental and analytical investigation on performance of slim floor beams with web openings at elevated temperatures. The results and conclusions from this study will help in developing innovative designs for slim floor beams and will help in reducing the fire related risk associated with structures comprising of slim floor beams with web openings.

Details

Journal of Structural Fire Engineering, vol. 10 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 23 October 2023

Mallikarjun S. Bhandiwad, B.M. Dodamani and Deepak M.D.

The present work involves analytical and experimental investigation of sloshing in a two-dimensional rectangular tank including the effect of porous baffles to control and/or…

Abstract

Purpose

The present work involves analytical and experimental investigation of sloshing in a two-dimensional rectangular tank including the effect of porous baffles to control and/or reduce the wave motion in the sloshing tank. The purpose of this study is to assess the analytical solutions of the drag coefficient effect on porous baffles performance to track free surface motion variation in the sloshing tank by comparison with experimental shake table tests under a range of sway excitation.

Design/methodology/approach

The linear second-order ordinary differential equations for liquid sloshing in the rectangular tank were solved using Newmark’s beta method and obtained the analytical solutions for liquid sloshing with dual vertical porous baffles of full submergence depths in a sway-oscillated rectangular tank following the methodology similar to Warnitchai and Pinkaew (1998) and Tait (2008).

Findings

The porous baffles significantly reduce wave elevation in the varying filled levels of the tank compared to the baffle-free tank under the range of excitation frequencies. It is observed that the Reynolds number-dependent drag coefficient for porous baffles in the tank can significantly reduce the sloshing elevations and is found to be effective to achieve higher damping compared to the porosity-dependent drag coefficient for porous baffles in the sloshing tank. The analytical model’s response to free surface elevation variations in the sloshing tank was compared with the experiment’s test results. The analytical results matched with shake table test results with a quantitative difference near the first resonant frequency.

Research limitations/implications

The scope of the study is limited to porous baffles performance under range sway motion and three different filling levels in the tank. The porous baffle performance includes Reynolds number dependent drag coefficient to explore the damping effect in the sloshing tank.

Originality/value

The porous baffles with low-level porosities in the sloshing tank have many engineering applications where the first resonant mode of sloshing in the tank is more important. The porous baffle drag coefficient is an important parameter to study the baffle’s damping effect in sloshing tanks. Hence, obtained analytical solution for liquid sloshing in the rectangular tank with Reynolds number as well as porosity-dependent drag coefficient (model 1) and porosity-dependent drag coefficient porous baffles (model 2) performance is discussed. The model’s test results were validated using a series of shake table sloshing experiments for three fill levels in the tank with sway motion at various excitation frequencies covering the first four sloshing resonant modes.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 6 July 2022

Klara Granheimer, Tina Karrbom Gustavsson and Per Erik Eriksson

Prior research has emphasised the importance of the early phases of construction projects, as well as the difficulties of procuring engineering services – especially due to the…

Abstract

Purpose

Prior research has emphasised the importance of the early phases of construction projects, as well as the difficulties of procuring engineering services – especially due to the uncertainties. Despite that, studies on the public procurement of engineering services are scarce. Although scholars have shown that uncertainty may affect the choice of control modes, the level of uncertainty that characterises services is not addressed by the two task characteristics: knowledge of the transformation process and output measurability. The purpose is to investigate organisational control in public procurement of engineering services.

Design/methodology/approach

The existing control model was adjusted in this study by conceptually adding uncertainty as a third aspect to the two task characteristics. A single case study of the Swedish Transport Administration was used. The empirical data, comprising 14 interviews with managers from the client and engineering consulting companies, were analysed using flexible pattern matching and visual mapping approaches and then illustrated using the model.

Findings

The public client did not base its choice of control modes on uncertainty, but rather on the other two task characteristics. Consequently, the service providers argued that the chosen control modes reduced their creativity, increased their financial risks and caused unclear responsibilities. This study therefore shows that uncertainty is an important factor to consider in the choice of control modes, both from a theoretical perspective and from the service providers' point of view. The developed model may therefore be useful for researchers as well as practitioners.

Originality/value

This study is the first attempt to add uncertainty as a task characteristic when choosing control modes. The results contribute to the scarce control literature regarding the procurement of engineering services for construction projects and the procurement of other services with high uncertainty.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 13
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 April 1997

Teck Min Choo, Meng Keong Chua, Chee Boon Ong and Theong Hee Tan

Examines the impact of client industry on the use and effectiveness of audit analytical procedures. Segregates audit client firms into two industry categories ‐ new and matured…

2504

Abstract

Examines the impact of client industry on the use and effectiveness of audit analytical procedures. Segregates audit client firms into two industry categories ‐ new and matured. Posits that the industry category the client firm is operating in will have a substantial effect on the extensiveness, types and effectiveness of analytical procedures employed. In particular, hypothesizes that analytical procedures will be more extensively and effectively used in the audit of firms in matured industries. Further, hypothesizes that trend analysis will be used primarily in the audit of firms in matured industries while visual scanning of data and ratio analyses will be used in the audit of firms in both new and matured industries. The results of a questionnaire survey distributed to one of the Big Six audit firms in Singapore support the above hypotheses.

Details

Managerial Auditing Journal, vol. 12 no. 3
Type: Research Article
ISSN: 0268-6902

Keywords

1 – 10 of over 54000