Search results

1 – 10 of 397
Article
Publication date: 27 May 2014

Ahmad Mashal, Jehad Abu-Dahrieh, Ashraf A. Ahmed, Lukumon Oyedele, No’man Haimour, Ahmad Al-Haj-Ali and David Rooney

The purpose of this paper is to investigate the performance of natural Jordanian zeolite tuff to remove ammonia from aqueous solutions using a laboratory batch method and…

Abstract

Purpose

The purpose of this paper is to investigate the performance of natural Jordanian zeolite tuff to remove ammonia from aqueous solutions using a laboratory batch method and fixed-bed column apparatus. Equilibrium data were fitted to Langmuir and Freundlich models.

Design/methodology/approach

Column experiments were conducted in packed bed column. The used apparatus consisted of a bench-mounted glass column of 2.5 cm inside diameter and 100 cm height (column volume = 490 cm3). The column was packed with a certain amount of zeolite to give the desired bed height. The feeding solution was supplied from a 30 liter plastic container at the beginning of each experiment and fed to the column down-flow through a glass flow meter having a working range of 10-280ml/min.

Findings

Ammonium ion exchange by natural Jordanian zeolite data were fitted by Langmuir and Freundlich isotherms. Continuous sorption of ammonium ions by natural Jordanian zeolite tuff has proven to be effective in decreasing concentrations ranging from 15-50 mg NH4-N/L down to levels below 1 mg/l. Breakthrough time increased by increasing the bed depth as well as decreasing zeolite particle size, solution flow-rate, initial NH4+ concentration and pH. Sorption of ammonium by the zeolite under the tested conditions gave the sorption capacity of 28 mg NH4-N/L at 20°C, and 32 mg NH4-N/L at 30°C.

Originality/value

This research investigates the performance of natural Jordanian zeolite tuff to remove ammonia from aqueous solutions using a laboratory batch method and fixed-bed column apparatus. The equilibrium data of the sorption of Ammonia were plotted by using the Langmuir and Freundlich isotherms, then the experimental data were compared to the predictions of the above equilibrium isotherm models. It is clear that the NH4+ ion exchange data fitted better with Langmuir isotherm than with Freundlich model and gave an adequate correlation coefficient value.

Details

World Journal of Science, Technology and Sustainable Development, vol. 11 no. 2
Type: Research Article
ISSN: 2042-5945

Keywords

Article
Publication date: 6 August 2018

Sayed-Farhad Mousavi, Hojat Karami, Saeed Farzin and Ehsan Teymouri

This study aims to use porous concrete and mineral adsorbents (additives) for reducing the quantity and improving the quality of urban runoff.

Abstract

Purpose

This study aims to use porous concrete and mineral adsorbents (additives) for reducing the quantity and improving the quality of urban runoff.

Design/methodology/approach

The effects of adding mineral adsorbents and fine grains to porous concrete is tested for increasing its performance in improving the quality of urban runoff. Two levels of sand (10 and 20 per cent) and 5, 10 and 15 per cent of zeolite, perlite, LECA and pumice were added to the porous concrete. Unconfined compressive strength, hydraulic conductivity (permeability) and porosity of the porous concrete specimens were measured. Some of the best specimens were selected for testing the improvement of runoff quality. A rainfall simulator was designed and the quality of the runoff was investigated for changes in electrical conductivity (EC), total suspended solids (TSS), total dissolved solids (TDS) and chemical oxygen demand (COD).

Findings

The results of this study showed that compressive strength of the porous concrete was increased by adding fine grains to the concrete mixture. Fine grains decreased the permeability and porosity of the samples. Zeolite had the highest compressive strength. Samples having pumice own maximum permeability. Samples which had perlite, had the least compressive strength and permeability. Because of the fast flow of runoff water in the porous slab and its low thickness, sufficient time was not provided for effective functioning of the additives, and the removal percentage of the pollution parameters was low.

Originality/value

Porous concrete can ameliorate both quantity and quality of the urban runoff.

Details

World Journal of Engineering, vol. 15 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 January 2019

Khaled Amiri, Tarik Hartani and Aziez Zeddouri

The purpose of this paper is to assess the water quality parameters resulting on: First, the flow direction in biofilters (ascending or descending), second, constructed wetland…

Abstract

Purpose

The purpose of this paper is to assess the water quality parameters resulting on: First, the flow direction in biofilters (ascending or descending), second, constructed wetland (CW) with local plant species and third, the combined system for the removal of organic matter and nutrients pollutants from water in arid regions.

Design/methodology/approach

An integrated system is presented and tested in situ with a vertical up-flow and down-flow biofilters. Two configurations schemes are followed by a three separated horizontal subsurface CWs: two planted with Phragmites australis, Typha latifolia and the third unplanted. The methodology is based on a statistical analysis of the collected data.

Findings

The present experiment demonstrated that the wetlands planted with P. australis and T. latifolia showed the highest removal. Moreover, T. latifolia performed better than P. australis for most of the parameters, notably in the first system, whereas the wetland efficiency indicated that P. australis contributed greatly to the removal of TP in the first system and NO3-N in the second system. In general, for the highest removal efficiencies of the combined biofilters and wetlands system, the present study demonstrated that the first system performed better than the second for all the parameters.

Originality/value

The originality of the research is that it compares in situ two biofilter systems: vertical up-flow and down-flow biofilters. To avoid the effects of domestic wastewater that is discharged directly without treatment in the Oued Righ channel or in the lake, this integrated system can be one of the alternatives for wastewater treatment, as it reveals the need to protect aquatic ecosystems in arid regions, and can decrease the risks to human health and the environment.

Details

Management of Environmental Quality: An International Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 11 June 2018

Jason Jie Xiang Bui, Yee Yong Tan, Fu Ee Tang and Carrie Ho

This study aims to investigate the hydraulic behaviour of a pilot-scale, two-staged, vertical flow constructed wetland (VFCW) for septage treatment, in terms of factors such as…

Abstract

Purpose

This study aims to investigate the hydraulic behaviour of a pilot-scale, two-staged, vertical flow constructed wetland (VFCW) for septage treatment, in terms of factors such as hydraulic retention time and hydraulic loading rate and its influence on the treatment dynamics. Because of intermittent feeding mode of VFCW systems and variation in its loading, its hydraulic behaviour is highly variable and need to be understood to optimize its treatment performance.

Design/methodology/approach

Tracer test were carried out using bromide ion with varying hydraulic loading rates (HLR) of 6.82 cm/d, 9.09 cm/d and 11.40 cm/d (i.e. equivalent to 75 L/d, 100L/d and 125 L/d). Tracer data is then analysed using the Residence Time Distribution (RTD) method.

Findings

RTD analysis showed that the increase in HLR increases the average hydraulic retention time (HRT). Subsequently, the increase in HLR results in a lower recovery of effluent, resulting in poor productivity in treatment. The study also showed that the removal of nitrogen and organic matter improved with increasing HRT. However, observations show no correlation between HRT and total solids removal.

Originality/value

A performance evaluation method (by tracer) is proposed to understand the hydraulics of flow in constructed wetlands, which has not been widely studied. Additionally, the dynamics of treatment in VFCWs treating septage may also be revealed by the tracer method. The study can be applied to any constructed wetlands designed for treatment of wastewater, septage or sludge.

Open Access
Article
Publication date: 27 July 2023

Aicha Gasmi, Marc Heran, Noureddine Elboughdiri, Lioua Kolsi, Djamel Ghernaout, Ahmed Hannachi and Alain Grasmick

The main purpose of this study resides essentially in the development of a new tool to quantify the biomass in the bioreactor operating under steady state conditions.

Abstract

Purpose

The main purpose of this study resides essentially in the development of a new tool to quantify the biomass in the bioreactor operating under steady state conditions.

Design/methodology/approach

Modeling is the most relevant tool for understanding the functioning of some complex processes such as biological wastewater treatment. A steady state model equation of activated sludge model 1 (ASM1) was developed, especially for autotrophic biomass (XBA) and for oxygen uptake rate (OUR). Furthermore, a respirometric measurement, under steady state and endogenous conditions, was used as a new tool for quantifying the viable biomass concentration in the bioreactor.

Findings

The developed steady state equations simplified the sensitivity analysis and allowed the autotrophic biomass (XBA) quantification. Indeed, the XBA concentration was approximately 212 mg COD/L and 454 mgCOD/L for SRT, equal to 20 and 40 d, respectively. Under the steady state condition, monitoring of endogenous OUR permitted biomass quantification in the bioreactor. Comparing XBA obtained by the steady state equation and respirometric tool indicated a percentage deviation of about 3 to 13%. Modeling bioreactor using GPS-X showed an excellent agreement between simulation and experimental measurements concerning the XBA evolution.

Originality/value

These results confirmed the importance of respirometric measurements as a simple and available tool for quantifying biomass.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 6 January 2012

Shai Fu, Kai Zhang, Mingjun Zhhang and Li Tian

The purpose of this paper is to provide a novel method for encapsulation of phthalocyanine blue pigment for inkjet printing inks.

Abstract

Purpose

The purpose of this paper is to provide a novel method for encapsulation of phthalocyanine blue pigment for inkjet printing inks.

Design/methodology/approach

Phthalocyanine blue pigment was encapsulated by emulsion polymerisation of styrene and a polymerisable dispersant, allyloxy nonyl‐phenoxy propanol polyoxyethylene ether ammonium sulphonate (ANPS). The encapsulated phthalocyanine blue pigment was further formulated into dispersion. The encapsulated phthalocyanine blue pigment was characterised with transmission electron microscopy (TEM), thermogravimetric analyses (TGA), X‐ray diffraction (XRD), Zeta potential and contact angle measurements. The encapsulated phthalocyanine blue pigment dispersion was evaluated in terms of rheological behaviour, particle size distribution and stability.

Findings

TEM and TGA proved that polymer encapsulation layer was formed onto phthalocyanine blue pigment surface. XRD indicated that the crystal structure of phthalocyanine blue pigment was not changed during the encapsulation process. The wettability of phthalocyanine blue pigment was improved after polymer encapsulation. The dispersion formulated with encapsulated phthalocyanine blue pigment had a narrow particle size distribution, excellent stability to temperature and centrifugal forces. Its rheological behaviour was close to Newtonian fluid.

Practical implications

The methods provided a novel and practical solution for preparing the encapsulated phthalocyanine blue pigment dispersion for formulation of inkjet printing ink.

Originality/value

The paper demonstrates how emulsion polymerisation technique is employed to encapsulate phthalocyanine blue pigment using a polymerisable dispersant, ANPS, which imparts to dispersion a small particle size, narrow particle size distribution and high stability.

Details

Pigment & Resin Technology, vol. 41 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 February 2004

Volker Lüderitz

The European Water Framework Directive is the basis of sustainable water resources management in the European Union. The required “good status” of waterbodies can be achieved only…

1365

Abstract

The European Water Framework Directive is the basis of sustainable water resources management in the European Union. The required “good status” of waterbodies can be achieved only by encouraging the application of natural renewable‐energy‐driven ecological engineering. Ecotechnological methods in wastewater treatment (e.g. constructed wetlands) can remove more than 90 per cent of total N and P, and organic load. These methods also save up to 80 per cent of the cost and energy compared with central technical systems. Because ecomorphology in around 80 per cent of German streams and rivers is disturbed to a high degree, increased efforts for renaturalization are necessary. Successful control concerning first initiated measures shows that improvement of stream morphology has a remarkable positive influence on water ecology.

Details

Management of Environmental Quality: An International Journal, vol. 15 no. 1
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 15 April 2024

Ann Wairimu Mburu, David Githinji Njuguna, Fredrick Musieba, Charles Nzila, Virginia Kimani and Alice Wangai

The purpose of this paper is to investigate the efficacy of bacterial exopolysaccharides (Eps) in reactive black 5 (RB5) textile dye wastewater bioremediation.

Abstract

Purpose

The purpose of this paper is to investigate the efficacy of bacterial exopolysaccharides (Eps) in reactive black 5 (RB5) textile dye wastewater bioremediation.

Design/methodology/approach

The Eps were produced by bacteria isolated from cotton gin trash soils collected from different cotton-growing regions in Kenya for comparison purposes. A broth medium reconstituted using molasses was assessed for its capacity to produce the Eps. RB5 textile dye wastewater was optimized for dye removal under different temperatures, times and molasses concentrations. Dye removal was studied by Lovibond-Day Light Comparator, UV–Vis spectrophotometer and FTIR.

Findings

It was found that cotton gin trash soils contained Eps-producing bacteria. Three of the Eps studied were found to have the capacity to remove at least 80% of the dye from the wastewater.

Research limitations/implications

This research did not assess the efficacy of the RB5 dye removal from the wastewater by mixtures of the Eps.

Practical implications

Bioremediation of textile dye wastewater with Eps produced by bacteria cultured from cotton gin trash soil is significant because it will offer an effective and cleaner alternative to the chemical coagulants.

Social implications

Alternative treatment of textile wastewater with the Eps would result in safer water being released into the water bodies as opposed to the chemically treated wastewater that contains remnant chemicals.

Originality/value

Research on the use of Eps produced by bacteria isolated from cotton gin trash soils for removal of RB5 dye from textile wastewater has not been done before.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 7 June 2022

O.A. Elhefnawy and A.A. Elabd

The purpose of this study is to prepare Polystyrene grafted with Zeolite Y (Zeosty) for Uranyl ion [U(VI)] adsorption from aqueous solution. The adsorption mechanism has been…

82

Abstract

Purpose

The purpose of this study is to prepare Polystyrene grafted with Zeolite Y (Zeosty) for Uranyl ion [U(VI)] adsorption from aqueous solution. The adsorption mechanism has been explained by studying kinetic, isothermal and thermodynamic models.

Design/methodology/approach

Polystyrene was grafted with Zeosty by a simple hydrothermal technique. Zeosty was characterized by different techniques such as X-ray diffraction, scanning electron microscope, energy dispersive X-ray and Infrared spectroscopy to confirm its structure and its molecular composition. Zeosty was used for U(VI) adsorption from an aqueous solution in a series of batch experiments. The effects of pH, contact time, initial U(VI) concentration and temperature on the adsorption process were investigated.

Findings

The results showed that the adsorption of U(VI) on the prepared reached equilibrium at pH 6 with a removal efficiency of 98.9%. Adsorption kinetics and isotherms models are studied on the experimental data to estimate the mechanism of the adsorption reaction was chemisorption and homogenous reaction. The activity of Zeosty increased at high temperatures, resulting in the adsorption capacity increase. Thermodynamic parameters ΔGo, ΔHo and ΔSo indicate that the adsorption processes are spontaneous and endothermic. Zeosty has an effective surface and could be considered a valuable adsorbent for U(VI) removal from aqueous waste. A comparison study proves that the new adsorbent has high effective behavior in the adsorption process, and it is considered a new reliable adsorbent for U(VI) removal from wastewater.

Originality/value

This study is complementary to the previous study using the same technique to prove that the effective fine particle adsorbents need solid support to enhance their absorption capacities.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 January 2018

Aisha H. Al-Moubaraki

This paper aims to evaluate the inhibitive potential of borage flowers’ aqueous extract (BFAE), Borago officinalis L., against the corrosion of mild steel in 1.0 M phosphoric acid.

Abstract

Purpose

This paper aims to evaluate the inhibitive potential of borage flowers’ aqueous extract (BFAE), Borago officinalis L., against the corrosion of mild steel in 1.0 M phosphoric acid.

Design/methodology/approach

Evaluation was carried out by chemical hydrogen evolution (HE), mass loss (ML) and electrochemical potentiodynamic polarization (PDP) measurements. SEM-EDX analysis also was used to confirm the existence of the adsorbed film.

Findings

It was found that the inhibition efficiency of BFAE increases with the increase in its concentration, but decreases with the increase in temperature. The potentiodynamic polarization curves indicated that BFAE acts as a mixed-type inhibitor with a predominantly anodic action. The adsorption of BFAE on mild steel surface was found to obey Langmuir and thermodynamic-kinetic adsorption isotherms by forming a thin film on the metal surface. SEM-EDX analysis confirms the corrosion inhibition ability of BFEA in 1.0 M H3PO4 by forming a thin film on mild steel surface. In this study, the inhibitive action of BFAE components is discussed on the basis of the physical adsorption mechanism. The same results were obtained for both the freshly prepared extract and the one that kept in a refrigerator for one year.

Originality/value

This paper indicates that BFAE can act as a good inhibitor for the corrosion of mild steel in 1.0 M H3PO4 even after one year of preparation.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 397