Search results

1 – 10 of 55
Article
Publication date: 19 September 2023

Xingbing Yang, Xinye Wang, Shuang Huang, Xin Liu, Xiang Huang and Ting Lei

In this study, solid formaldehyde, benzoguanamine and butanol were used to synthesize butylated benzo-amino resin by one-step-two-stage method.

Abstract

Purpose

In this study, solid formaldehyde, benzoguanamine and butanol were used to synthesize butylated benzo-amino resin by one-step-two-stage method.

Design/methodology/approach

This research first examined the influence of solid formaldehyde content on the hydroxymethylation phase. Subsequently, the effects of butanol content, etherification time and hydrochloric acid content on the formation of benzo-amino resin during the etherification stage were studied in detail. In addition, the reaction process was further analyzed through interval sampling withdrawing during the hydroxymethylation and etherification stages. Finally, the synthesized benzo-amino resins were used in the production of high solid content polyester and acrylic coatings and the properties of that were also evaluated.

Findings

Based on the experimental findings, the authors have successfully determined the optimal process conditions for the one-step-two-stage method in this study. The hydroxymethylation stage demonstrated the most favorable outcomes at a reaction temperature of 60°C and a pH of 8.5. Similarly, for the etherification stage, the optimal conditions were achieved at a temperature of 45°C and a pH of 4.5. Furthermore, the investigation revealed that a ratio of benzoguanamine to solid formaldehyde to n-butanol, specifically at 1:5.2:15, produced the best results. The performance of the resulting etherified benzo-amino resin was thoroughly evaluated in high solid content coatings, and it exhibited promising characteristics. Notably, there was a significant enhancement in the water resistance, solvent resistance and glossiness of canned iron printing varnish coatings.

Originality/value

Amino resin, a versatile chemical compound widely used in various industries, presents challenges in terms of sustainability and operational efficiency when synthesized using conventional methods, primarily relying on a 37% formaldehyde solution. To address these challenges, the authors propose a novel approach in this study that combines the advantages of the solid formaldehyde with a two-stage catalytic one-step synthesis process. The primary objective of this research is to minimize the environmental impact associated with amino resin synthesis, optimize resource utilization and enhance the economic feasibility for its industrial implementation. By adopting this alternative approach, the authors aim to contribute toward a more sustainable and efficient production of amino resin.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 June 2022

Lan Chu, Chao Guo, Qing Zhang, Qing Wang, Yiwen Ge, Mingyang Hao and Jungang Lv

This study aims to using Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and scanning electron microscope/energy dispersive Xray spectrometer to identify…

Abstract

Purpose

This study aims to using Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and scanning electron microscope/energy dispersive Xray spectrometer to identify different automotive coatings for forensic purpose.

Design/methodology/approach

Two four-layered samples in a hit-and-run case were compared layer by layer with three different methods. FTIR spectroscopy was used to primarily identify the organic and inorganic compositions. Raman spectrum and scanning electron microscope/energy dispersive Xray spectrometer (SEM-EDS) were further used to complement the FTIR results.

Findings

Two weak and tiny peaks in one layer found between two samples by FTIR, Raman microscope and SEM-EDS verified the result of differences. The study used the three instruments in combination and found it’s effective in sensing coatings, especially in the inorganic additives.

Research limitations/implications

Using these three instruments in combination is more accurate than individually in multilayered coating analysis for forensic purpose.

Practical implications

The three different instruments all present unique information on the composition, and provided similar and mutually verifiable results on the two samples.

Originality/value

With this method, scientists could identify and discriminate important coating evidences with tiny but characteristic differences.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 December 2023

Ümran Burcu Alkan, Nilgün Kızılcan and Başak Bengü

The purpose of this study is the development of sustainable and low-formaldehyde emission wood adhesive formulations.

Abstract

Purpose

The purpose of this study is the development of sustainable and low-formaldehyde emission wood adhesive formulations.

Design/methodology/approach

Three-step urea formaldehyde (UF) resin has been in situ modified with calcium lignosulfonate (LS) and/or 1,4 butanediol diglycidyl ether (GE). The structural, chemical, thermal and morphological characterizations were carried out on resin samples. These resins have been applied for particleboard pressing, and UF, UF-LS and UF-GE were evaluated as P2 classes according to EN 312.

Findings

The results show that the improved LS- or diglycidyl ether-modified UF wood adhesives were successful in their adhesive capacity, and the formaldehyde content of the final product was obtained as low as 8 mg/100 g. This paper highlights that the presented adhesive formulations could be a potential eco-friendly and cost-effective alternative to formaldehyde-based wood adhesives for interior particleboard production.

Research limitations/implications

Combination of LS and GE resulted in weaker mechanical properties and fulfilled P1 class particleboards due to temperature and duration conditions. Therefore, in situ usage of LS or GE in UF resins is highly recommended for particleboard pressing. Formaldehyde content of particleboards was determined with the perforator method according to EN 12460-5 and all of the particleboards exhibited E1 class. LS was more efficient in decreasing formaldehyde content than GE.

Practical implications

This study provides the application of particleboards with low formaldehyde emission.

Social implications

The developed LS- and diglycidyl ether-modified UF resins made it possible to obtain boards with significantly low formaldehyde content compared with commercial resins.

Originality/value

The developed formaldehyde-based resin formulation made it possible to produce laboratory-scale board prototypes using LS or GE without sacrificing of press factors and panel quality.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 August 2022

Salise Oktay, Nilgün Kızılcan and Başak Bengü

In industrial applications, formaldehyde-based wood adhesives have been used extensively because of their low costs and high reactivity. However, their real-world applications are…

Abstract

Purpose

In industrial applications, formaldehyde-based wood adhesives have been used extensively because of their low costs and high reactivity. However, their real-world applications are hindered by some main bottlenecks, especially the formaldehyde emission and usage of nonrenewable raw materials. The purpose of this study is the development of sustainable and formaldehyde-free wood adhesive formulation.

Design/methodology/approach

In this study, starch and tannin-based wood adhesive were synthesized. Chemical structures and thermal properties of the prepared bio-based resin formulations were elucidated by using Fourier transform infrared and differential scanning calorimetry analysis, respectively. Laboratory scale particleboard production was carried out to determine the performance of the developed resin formulations. Obtained results were evaluated in dry medium (P2) according to European norms EN 312 (2010). Furthermore, the board formaldehyde content was determined by using the perforator method according to the European Norm EN 12460-5.

Findings

The results show that the improved starch and tannin-based wood adhesives were successful in their adhesive capacity, and the formaldehyde content of the final product was obtained as low as 0.75 mg/100 g. This paper highlights that the presented adhesive formulations could be a potential eco-friendly and cost-effective alternative to the formaldehyde-based wood adhesives for interior particleboard production.

Research limitations/implications

Starch-based resins in the liquid form needed to be continuously mixed throughout their shelf life to prevent the starch from settling because it was not possible to dissolve the precipitated starch again after a while. For this reason, starch was given to the chips in powder form while preparing the particleboard.

Practical implications

In conclusion, this study shows that the developed bio-based resin formulations have a high potential to be used for producing interior-grade particleboards instead of commercial formaldehyde-based wood adhesives because the obtained results generally satisfied the interior grade particleboard requirements according to European norms EN 312, P2 class (2010). In addition, it was determined that the produced boards had significantly low formaldehyde content. The low formaldehyde content of the final boards was not because of the resin but because of the natural structure of the wood raw material, press parameters and environmental factors.

Social implications

The developed bio-based resin system made it possible to obtain boards with significantly low formaldehyde content compared to commercial resins.

Originality/value

The developed bio-based resin formulation made it possible to produce laboratory-scale board prototypes at lower press factors and board densities compared to their counterparts.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 21 December 2023

Xinran Zhao, Yingying Pang, Gang Wang, Chenhui Xia, Yuan Yuan and Chengqian Wang

This paper aims to realize the vertical interconnection in 3D radio frequency (RF) circuit by coaxial transitions with broad working bandwidth and small signal loss.

Abstract

Purpose

This paper aims to realize the vertical interconnection in 3D radio frequency (RF) circuit by coaxial transitions with broad working bandwidth and small signal loss.

Design/methodology/approach

An advanced packaging method, 12-inch wafer-level through-mold-via (TMV) additive manufacturing, is used to fabricate a 3D resin-based coaxial transition with a continuous ground wall (named resin-coaxial transition). Designation and simulation are implemented to ensure the application universality and fabrication feasibility. The outer radius R of coaxial transition is optimized by designing and fabricating three samples.

Findings

The fabricated coaxial transition possesses an inner radius of 40 µm and a length of 200 µm. The optimized sample with an outer radius R of 155 µm exhibits S11 < –10 dB and S21 > –1.3 dB at 10–110 GHz and the smallest insertion loss (S21 = 0.83 dB at 77 GHz) among the samples. Moreover, the S21 of the samples increases at 58.4–90.1 GHz, indicating a broad and suitable working bandwidth.

Originality/value

The wafer-level TMV additive manufacturing method is applied to fabricate coaxial transitions for the first time. The fabricated resin-coaxial transitions show good performance up to the W-band. It may provide new strategies for novel designing and fabricating methods of RF transitions.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 5 May 2022

Sayed Gulzar Ganai, Javid Ahmad Khan and Showkat Ahmad Bhat

The export competitiveness has only calculated on only two aspects either comparatively advantageous or comparatively disadvantageous products for India or China. There is not any…

Abstract

Purpose

The export competitiveness has only calculated on only two aspects either comparatively advantageous or comparatively disadvantageous products for India or China. There is not any thorough study that has been undertaken for Indian manufacturing sector at a segregated level along with that of China. So, in the light of these shortcomings, the purpose of this study is to analyse the dynamics of export competitiveness of indian manufacturing sector vis-à-vis its emerging counterpart, china in the global market.

Design/methodology/approach

A modified revealed comparative advantage index has been used in two different phases of 2001–08 and 2010–18 to find the dynamic pattern of manufacturing exports of India and China in the world market.

Findings

The study revealed that India has shown a positive response in increasing its competitive positioned products from low-technology to medium-technology products during the study period. There has been a decline in the competitive positioned products of China and simultaneously China’s threatened product lines have shown an immense increment over the years. Moreover, Indian exports are concentrated to few low-technology and resource-intensive products, that share more than 50% of total exported value for its manufacturing in the global market, whereas, China is much diversified and the exported value is more scattered over its manufactured items.

Research limitations/implications

The study does not include the factors that impacted the export competitiveness of the sample economies and thus adds a limitation to this study.

Originality/value

As there is very limited research on dynamics of export competitiveness of Indian manufacturing exports at harmonised system 6-digit level with China, this study fulfils the gap.

Details

Competitiveness Review: An International Business Journal , vol. 33 no. 5
Type: Research Article
ISSN: 1059-5422

Keywords

Article
Publication date: 13 June 2023

Roma G. Elfadel, Hala M. Refat, H. Abdelwahab, Salem S. Salem, Mohamed A. Awad and M.A.M. Abdel Reheim

This paper aims to investigate the prepared modified alkyd and poly(ester-amide) (PEA) resins as antimicrobial and insecticide binders for surface coating applications.

56

Abstract

Purpose

This paper aims to investigate the prepared modified alkyd and poly(ester-amide) (PEA) resins as antimicrobial and insecticide binders for surface coating applications.

Design/methodology/approach

Salicylic diethanolamine and 4-(N, N-dimethylamino) benzylidene glutamic acid were prepared and used as new sources of polyol and dibasic acid for PEA and alkyd resins, then confirmed by: acid value, FT-IR and 1H-NMR. The coating performance of the resins was determined using measurements of physico-mechanical properties. The biological and insecticide activities of the prepared resins were investigated.

Findings

The tests carried out revealed that the modified PEA and alkyd enhanced both phyisco-mechanical and chemical properties in addition to the biological and insecticide activities. The results of this paper illustrate that the introduction of salicylic diethanolamine and 4-(N, N-dimethylamino) benzylidene glutamic acid within the resin structure improved the film performance and enhanced the antimicrobial activity performance of PEA and alkyd resins.

Research limitations/implications

The modified alkyd and PEA organic resins can be used as biocidal binders when incorporated into paint formulations for multiple surface applications, especially those that are exposed to several organisms.

Originality/value

Modified alkyd and PEA resins based on newly synthesized modifiers have a significant potential to be promising in the production and development of antimicrobial and insecticide paints, allowing them to function to restrict the spread of insects and microbial infection.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 June 2023

Alexander I. Ikeuba, Christopher U. Sonde, Ifeatu E. Chukwudubem, Remigius C. Anozie, Benedict U. Ugi, Benedict Onyeachu, Okpo O. Ekerenam and Wilfred Emori

In line with current research efforts to develop eco-friendly strategies for corrosion mitigation, the purpose of this study is to appraise the anti-corrosion potential of…

Abstract

Purpose

In line with current research efforts to develop eco-friendly strategies for corrosion mitigation, the purpose of this study is to appraise the anti-corrosion potential of selected amino acids on magnesium corrosion in sodium chloride solutions.

Design/methodology/approach

The corrosion inhibition of magnesium in aqueous solutions in the presence of benign, eco-friendly and readily available amino acids (alanine, arginine, histidine, lysine, proline) were evaluated using electrochemical methods.

Findings

Amino acids suppressed magnesium corrosion rate in aqueous sodium chloride solutions. The order of inhibition efficiency (%IE) was as follows: alanine < arginine < histidine < lysine < proline. The open circuit potential shift with respect to the blank was less than 0.085 VSCE, indicating that the amino acids are mixed-type corrosion inhibitors. In addition, the %IE of the amino acids was inversely proportional to the molecular weight. The results obtained indicate that the amino acids can serve as sustainable eco-friendly corrosion inhibitors for magnesium with the best inhibition efficiency attributed to proline with an efficiency of 85.1%.

Originality/value

New information on the application of amino acids as green sustainable corrosion inhibitors is provided herein.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 17 May 2022

Sampson Kofi Kyei, William Iheanyi Eke, Godfred Darko and Onyewuchi Akaranta

This study aims to synthesize pigment and resin from agro-wastes and use them in the formulation of eco-friendly surface coatings.

Abstract

Purpose

This study aims to synthesize pigment and resin from agro-wastes and use them in the formulation of eco-friendly surface coatings.

Design/methodology/approach

The pigments and resin were synthesized through a chemical modification of agro-wastes. The pigments were characterized by infrared spectroscopy (FTIR) and were screened for their antimicrobial activities. The physicochemical characteristics of the cashew nutshell liquid (CNSL)-modified resin were evaluated. These precursors and other natural additives were used to formulate surface coatings, and their drying and adhesive properties were evaluated using international testing methods.

Findings

It was observed that the curing of the CNSL-modified resin depended on time and temperature. The pigments exhibited antimicrobial activity against E. coli and S. aureus and had high melting points, affirming their stability. The chemically modified precursors successfully yielded surface coatings with acceptable drying times and adhesion to the base substrate.

Practical implications

The use of agro-wastes as the main components of the surface coatings implies waste valorization, a reduction in production costs and the creation of job opportunities for sustainable development. To increase the chemical, physical, corrosion resistance and antimicrobial qualities of paint compositions, chemically modified peanut skin extracts and CNSL can be used as pigments and resins, respectively. This could be a green approach to achieving the targets of Sustainable development goals 11 and 12.

Originality/value

The paper outlines a prospective approach to use unwanted waste (peanut skin, cashew nutshells) and other natural additives as industrial raw materials. These novel surface coating precursors are cost-effective, readily available, eco-friendly and could replace conventional precursors.

Details

Pigment & Resin Technology, vol. 52 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 May 2022

H. Abd El-Wahab and Raafat A. El-Eisawy

This paper aims to prepare new modified alkyd resins and use it as an antimicrobial binder for surface coating applications.

Abstract

Purpose

This paper aims to prepare new modified alkyd resins and use it as an antimicrobial binder for surface coating applications.

Design/methodology/approach

Various modified alkyd resins were prepared by partial replacement of 3,6-dichloro benzo[b]thiophene-2-carbonyl bis-(2-hydroxy ethyl)-amide as a source of polyol with glycerol and confirmed by acid value, FT-IR, 1H-NMR. The modified alkyd resins were covering a wide range of oil lengths and hydroxyl content (0%, 10%, 20% and 30% excess-OH). The antimicrobial activity of the prepared alkyds was also investigated. The coatings of 60 ± 5 µm thickness were applied to the surface of glass panels and mild steel strips by means of a brush. Physico-mechanical tests, chemical resistance and antimicrobial activities were investigated.

Findings

The obtained results illustrate that the introduction of benzo[b]thiophene derivative as a modifier polyol within the resin structure improved the film performance and enhanced the physico-mechanical characteristics, chemical resistance and the antimicrobial activities.

Practical implications

The modified alkyd resins can be employed as antimicrobial binders in paint compositions for a variety of surfaces, particularly those that are susceptible to a high number of bacteria.

Originality/value

Modified alkyd resins based on antimicrobial heterocyclic compounds have the potential to be promising in the manufacturing of antimicrobial coatings and development of paints, allowing them to function to prevent the spread of microbial infection, which is exactly what the world requires at this time. Also, they can be applied in different substrates for industrial applications.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 55