Search results

1 – 1 of 1
To view the access options for this content please click here
Article

Amel Bouakkadia, Leila Lourici and Djelloul Messadi

The purpose of this paper is to predict the octanol/water partition coefficient (Kow) of 43 organophosphorous compounds.

Abstract

Purpose

The purpose of this paper is to predict the octanol/water partition coefficient (Kow) of 43 organophosphorous compounds.

Design/methodology/approach

A quantitative structure-property relationship analysis was performed on a series of 43 pesticides using multiple linear regression and support vector machines methods, which correlate the octanol-water partition coefficient (Kow) values of these chemicals to their structural descriptors. At first, the data set was randomly separated into a training set (34 chemicals) and a test set (nine chemicals) for statistical external validation.

Findings

Models with three descriptors were developed using theoretical descriptors as independent variables derived from Dragon software while applying genetic algorithm-variable subset selection procedure.

Originality/value

The robustness and the predictive performance of the proposed linear model were verified using both internal and external statistical validation. One influential point which reinforces the model and an outlier were highlighted.

Details

Management of Environmental Quality: An International Journal, vol. 28 no. 4
Type: Research Article
ISSN: 1477-7835

Keywords

1 – 1 of 1