Search results

1 – 1 of 1
Article
Publication date: 18 July 2019

Gilberto Gomes, Alvaro Martins Delgado Neto, Luciano Mendes Bezerra and Ramon Silva

The purpose of this paper is to describe further developments on a novel formulation of the boundary element method (BEM) for inelastic problems using the dual reciprocity method…

Abstract

Purpose

The purpose of this paper is to describe further developments on a novel formulation of the boundary element method (BEM) for inelastic problems using the dual reciprocity method (DRM) but using object-oriented programming (OOP). As the BEM formulation generates a domain integral due to the inelastic stresses, the DRM is employed in a modified form using polyharmonic spline approximating functions with polynomial augmentation. These approximating functions produced accurate results in BEM applications for a range of problems tested, and have been shown to converge linearly as the order of the function increases.

Design/methodology/approach

A programming class named DRMOOP, written in C++ language and based on OOP, was developed in this research. With such programming, general matrix equations can be easily established and applied to different inelastic problems. A vector that accounts for the influence of the inelastic strains on the displacements and boundary forces is obtained.

Findings

The C++ DRMOOP class has been implemented and tested with the BEM formulation applied to classical elastoplastic problem and the results are reported at the end of the paper.

Originality/value

An object-oriented technology and the C++ DRMOOP class applied to elastoplastic problems.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Access

Year

Content type

Article (1)
1 – 1 of 1