Search results

1 – 10 of 37
Article
Publication date: 10 May 2023

Upama Dey, Aparna Duggirala and Souren Mitra

Aluminium alloys can be used as lightweight and high-strength materials in combination with the technology of laser beam welding, an efficient joining method, in the manufacturing…

Abstract

Purpose

Aluminium alloys can be used as lightweight and high-strength materials in combination with the technology of laser beam welding, an efficient joining method, in the manufacturing of automotive parts. The purposes of this paper are to conduct laser welding experiments with Al2024 in the lap joint configuration, model the laser welding process parameters of Al2024 alloys and use propounded models to optimize the process parameters.

Design/methodology/approach

Laser welding of Al2024 alloy has been conducted in the lap joint configuration. Then, the influences of explanatory variables (laser peak power, scanning speed and frequency) on outcome variables (weld width [WW], throat length [TL] and breaking load [BL]) have been investigated with Poisson regression analysis of the data set derived from experimentation. Thereafter, a multi-objective genetic algorithm (MOGA) has been used using MATLAB to find the optimum solutions. The effects of various input process parameters on the responses have also been analysed using response surface plots.

Findings

The promulgated statistical models, derived with Poisson regression analysis, are evinced to be well-fit ones using the analysis of deviance approach. Pareto fronts have been used to demonstrate the optimization results, and the maximized load-bearing capacity is computed to be 1,263 N, whereas the compromised WW and TL are 714 µm and 760 µm, respectively.

Originality/value

This work of conducting laser welding of lap joint of Al2024 alloy incorporating the Taguchi method and optimizing the input process parameters with the promulgated statistical models proffers a neoteric perspective that can be useful to the manufacturing industry.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 May 2023

Amit Rana, Sandeep Deshwal, Rajesh and Naveen Hooda

The weld joint mechanical properties of friction stir welding (FSW) are majorly reliant on different input parameters of the FSW machine. The study and optmization of these…

Abstract

Purpose

The weld joint mechanical properties of friction stir welding (FSW) are majorly reliant on different input parameters of the FSW machine. The study and optmization of these parameters is uttermost requirement and aim of this study to increase the suitability of FSW in different manufacturing industries. Hence, the input parameters are optimized through different soft computing methods to increase the considered objective in this study.

Design/methodology/approach

In this research, ultimate tensile strength (UTS), yield strength (YS) and elongation (EL) of FSW prepared butt joints of AA6061 and AA5083 Aluminium alloys materials are investigated as per American Society for Testing and Materials (ASTM E8-M04) standard. The FSW joints were prepared by changing the three input process parameters. To develop experimental run order design matrix, rotatable central composite design strategy was used. Furthermore, genetic algorithm (GA) in combination (Hybrid) with response surface methodology (RSM), artificial neural network (ANN), i.e. RSM-GA, ANN-GA, is exercised to optimize the considered process parameters.

Findings

The maximum value of UTS, YS and EL of test specimens on universal testing machine was measured as 264 MPa, 204 MPa and 14.41%, respectively. The most optimized results (UTS = 269.544 MPa, YS = 211.121 MPa and EL = 17.127%) are obtained with ANN-GA for the considered objectives.

Originality/value

The optimization of input parameters to increase the output objective values using hybrid soft computing techniques is unique in this research paper. The outcomes of this study will help the FSW using manufacturing industries to choose the best optimized parameters set for FSW prepared butt joint with improved mechanical properties.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 April 2024

Namrata Gangil, Arshad Noor Siddiquee, Jitendra Yadav, Shashwat Yadav, Vedant Khare, Neelmani Mittal, Sambhav Sharma, Rittik Srivastava and Sohail Mazher Ali Khan M.A.K. Mohammed

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and…

Abstract

Purpose

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and sizes, and showcase welding avenues. It further extends to highlight the promising friction stir welding as a single solid-state pipe welding procedure. This paper will enable all piping, welding and friction stir welding stakeholders to identify scope for their engagement in a single window.

Design/methodology/approach

The paper is a review paper, and it is mainly structured around sections on materials, sizes and standards for pipes in different sectors and the current welding practice for joining pipe and pipe connections; on the process and principle of friction stir welding (FSW) for pipes; identification of main welding process parameters for the FSW of pipes; effects of process parameters; and a well-carved-out concluding summary.

Findings

A well-carved-out concluding summary of extracts from thoroughly studied research is presented in a structured way in which the avenues for the engagement of FSW are identified.

Research limitations/implications

The implications of the research are far-reaching. The FSW is currently expanding very fast in the welding of flat surfaces and has evolved into a vast number of variants because of its advantages and versatility. The application of FSW is coming up late but catching up fast, and as a late starter, the outcomes of such a review paper may support stake holders to expand the application of this process from pipe welding to pipe manufacturing, cladding and other high-end applications. Because the process is inherently inclined towards automation, its throughput rate is high and it does not need any consumables, the ultimate benefit can be passed on to the industry in terms of financial gains.

Originality/value

To the best of the authors’ knowledge, this is the only review exclusively for the friction stir welding of pipes with a well-organized piping specification detailed about industrial sectors. The current pipe welding practice in each sector has been presented, and the avenues for engaging FSW have been highlighted. The FSW pipe process parameters are characteristically distinguished from the conventional FSW, and the effects of the process parameters have been presented. The summary is concise yet comprehensive and organized in a structured manner.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 November 2023

Dravesh Yadav, Ravi Sastri Ayyagari and Gaurav Srivastava

This paper numerically investigates the effect of cavity radiation on the thermal response of hollow aluminium tubes and facade systems subjected to fire.

Abstract

Purpose

This paper numerically investigates the effect of cavity radiation on the thermal response of hollow aluminium tubes and facade systems subjected to fire.

Design/methodology/approach

Finite element simulations were performed using ABAQUS 6.14. The accuracy of the numerical model was established through experimental and numerical results available in the literature. The proposed numerical model was utilised to study the effect of cavity radiation on the thermal response of aluminium hollow tubes and facade system. Different scenarios were considered to assess the applicability of the commonly used lumped capacitance heat transfer model.

Findings

The effects of cavity radiation were found to be significant for non-uniform fire exposure conditions. The maximum temperature of a hollow aluminium tube with 1-sided fire exposure was found to be 86% greater when cavity radiation was considered. Further, the time to attain critical temperature under non-uniform fire exposure, as calculated from the conventional lumped heat capacity heat transfer model, was non-conservative when compared to that predicted by the proposed simulation approach considering cavity radiation. A metal temperature of 550 °C was attained about 18 min earlier than what was calculated by the lumped heat capacitance model.

Research limitations/implications

The present study will serve as a basis for the study of the effects of cavity radiation on the thermo-mechanical response of aluminium hollow tubes and facade systems. Such thermo-mechanical analyses will enable the study of the effects of cavity radiation on the failure mechanisms of facade systems.

Practical implications

Cavity radiation was found to significantly affect the thermal response of hollow aluminium tubes and façade systems. In design processes, it is essential to consider the potential consequences of non-uniform heating situations, as they can have a significant impact on the temperature of structures. It was also shown that the use of lumped heat capacity heat transfer model in cases of non-uniform fire exposure is unsuitable for the thermal analysis of such systems.

Originality/value

This is the first detailed investigation of the effects of cavity radiation on the thermal response of aluminium tubes and façade systems for different fire exposure conditions.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 12 June 2023

Srinivas Naik Lonavath and Hadya Boda

This Friction stir welding study aims to weld thick AA8011 aluminium plates, and the interface joints created with a variety of tool pin profiles were examined for their effects…

Abstract

Purpose

This Friction stir welding study aims to weld thick AA8011 aluminium plates, and the interface joints created with a variety of tool pin profiles were examined for their effects on the welding process.

Design/methodology/approach

Scanning electron microscopy and optical microscopy and X-ray diffraction were used to examine the macro and micro-structural characteristics, as well as the fracture surfaces, of tensile specimens. The mechanical properties (tensile, hardness tests) of the base metal and the welded specimens under a variety of situations being tested. Additionally, a fracture toughness test was used to analyse the resilience of the base metal and the best weldments to crack formation. Using a response surface methodology with a Box–Behnken design, the optimum values for the three key parameters (rotational speed, welding speed and tool pin profile) positively affecting the weld quality were established.

Findings

The results demonstrate that a defect-free junction can be obtained by using a cylindrical tool pin profile, increasing the rotational speed while decreasing the welding speeds. The high temperature and compressive residual stress generated during welding leads to the increase in grain size. The grain size of the welded zone for optimal conditions is significantly smaller and the hardness of the stir zone is higher than the other experimental run parameters.

Originality/value

The work focuses on the careful examination of microstructures behaviour under various tool pin profile responsible for the change in mechanical properties. The mathematical model generated using Taguchi approach and parameters was optimized by using multi-objectives response surface methodology techniques.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 26 February 2024

Madhavarao Singuru, Kesava Rao V.V.S. and Rama Bhadri Raju Chekuri

This study aims to investigate the optimal process parameters of the wire-cut electrical discharge machining (WCEDM) for the machining of the GZR-AA7475 hybrid metal matrix…

Abstract

Purpose

This study aims to investigate the optimal process parameters of the wire-cut electrical discharge machining (WCEDM) for the machining of the GZR-AA7475 hybrid metal matrix composite (HMMC). HMMCs are prepared with 2 Wt.% graphite and 4 Wt.% zirconium dioxide reinforced with aluminium alloy 7475 (GZR-AA7475) composite by using the stir casting method. The objective is to enhance the mechanical properties of the material while preserving its unique features. WCEDM with a 0.18 mm molybdenum wire electrode is used for machining the composite.

Design/methodology/approach

To conduct experimental studies, a Taguchi L27 orthogonal array was adopted. Input variables such as peak current (Ip), pulse-on-time (TON) and flushing pressure (PF) were used. The effect of process parameters on the output responses, such as material removal rate (MRR), surface roughness rate (SRR) and wire wear ratio (WWR), were investigated. The grey relational analysis (GRA) is used to obtain the optimal combination of the process parameters. Analysis of variance (ANOVA) was also used to identify the significant process parameters affecting the output responses.

Findings

Results from the current study concluded that the optimal condition for grey relational grade is obtained at TON = 105 µs, Ip = 100 A and PF = 90 kg/cm2. Peak current is the most prominent parameter influencing the MRR, whereas SRR and WRR are highly influenced by flushing pressure.

Originality/value

Identifying the optimal process parameters in WCEDM for machining of GZR-AA7475 HMMC. ANOVA and GRA are used to obtain the optimal combination of the process parameters.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 February 2023

Emmanuel Otchere-Darko, Laura Atuah, Richard Opoku and Christian Koranteng

Green roofs are strategies for the ecological intensification of cities and a measure of meeting some of the sustainable development goals (SDGs). They have widely been adopted as…

Abstract

Purpose

Green roofs are strategies for the ecological intensification of cities and a measure of meeting some of the sustainable development goals (SDGs). They have widely been adopted as an adaptation strategy against an urban heat island (UHI). However, they are conventionally soil-based making it difficult and expensive to adopt as a strategy for greening existing buildings (GEB). This paper, therefore, develops a novel green roof system using climbers for thermal-radiative performance. The paper explores the vitality of climbing species as a nature-based strategy for GEB, and for the ecological improvement of the predominantly used cool roofs in sub-Saharan Africa (SSA).

Design/methodology/approach

Simulation for the same building Kejetia Central Market (KCM) Redevelopment; the existing aluminium roof (AL), soil-based extensive green roof (GR1) and the proposed green roof using climbing plants (GR2) were performed using ENVI-met. The AL and GR1 were developed as reference models to evaluate and compare thermal-radiative performance of the conceptual model (GR2). The long wave radiation emission (Qlw), mean radiant temperature (MRT) and outdoor air temperature (Ta) of all three roofing systems were simulated under clear sky conditions to assess the performance and plant vitality considering water access, leaf temperature (Tf) and latent heat flux (LE0) of GR1 and GR2.

Findings

There was no short wave radiation (Qsw) absorption at the GR2 substrate since the climbers have no underlying soil mass, recording daily mean average Qlw emission of 435.17 Wm−2. The soil of GR1, however, absorbed Qsw of 390.11 Wm−2 and a Qlw emission of 16.20 wm−2 higher than the GR2. The AL recorded the lowest Qlw value of 75.43 Wm−2. Also, the stomatal resistance (rs) was higher in GR1 while GR2 recorded a higher average mean transpiration flux of 0.03 g/sm3. This indicates a higher chance of survival of the climbers. The Ta of GR2 recording 0.45°C lower than the GR1 could be a good UHI adaptation strategy.

Research limitations/implications

No previous research on climbers for green roof systems was found for comparison, so the KCM project provided a unique confluence of dynamic events including the opportunity for block-scale impact assessment of the proposed GEB strategy. Notwithstanding, the single case study allowed a focussed exploration of the novel theory of redefining green roof systems with climbers. Moreover, the simulation was computationally expensive, and engaging multiple case studies were found to be overly exhaustive to arrive at the same meaningful conclusion. As a novelty, therefore, this research provides an alternative theory to the soil-based green roof phenomenon.

Practical implications

The thermal-radiative performance of green roofs could be improved with the use of climbers. The reduction of the intensity of UHI would lead to improved thermal comfort and building energy savings. Also, very little dependence on the volume of soil would require little structural load consideration thereby leading not only to cheaper green roof construction but their higher demand, adoption and implementation in SSA and other low-income economies of the global south.

Social implications

The reduction of the consumption of topsoil and water for irrigation could avoid the negative environmental impacts of land degradation and pollution which have a deleterious impact on human health. This fulfils SDG 12 which seeks to ensure responsible consumption of products. This requires the need to advance the research for improvement and training of local built environment practitioners with new skills for installation to ensure social inclusiveness in the combat against the intractable forces of negative climate impacts.

Originality/value

Climbers are mostly known for green walls, but their innovative use for green roof systems has not been attempted and adopted; it could present a cost-effective strategy for the GEB. The proposed green roof system with climbers apart from becoming a successful strategy for UHI adaptation was also able to record an estimated 568% savings on topsoil consumption with an impact on the reduction of pollution from excavation. The research provides an initial insight into design options, potentials and limitations on the use of climbers for green roofs to guide future research and experimental verification.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 19 June 2023

Mandeep Singh, Khushdeep Goyal and Deepak Bhandari

The purpose of this paper is to evaluate the effect of titanium oxide (TiO2) and yttrium oxide (Y2O3) nanoparticles-reinforced pure aluminium (Al) on the mechanical properties of…

Abstract

Purpose

The purpose of this paper is to evaluate the effect of titanium oxide (TiO2) and yttrium oxide (Y2O3) nanoparticles-reinforced pure aluminium (Al) on the mechanical properties of hybrid aluminium matrix nanocomposites (HAMNCs).

Design/methodology/approach

The HAMNCs were fabricated via a vacuum die-assisted stir casting route by a two-step feeding method. The varying weight percentages of TiO2 and Y2O3 nanoparticles were added as 2.5, 5, 7.5 and 10 Wt.%.

Findings

Scanning electron microscope images showed the homogenous dispersion of nanoparticles in Al matrix. The tensile strength by 28.97%, yield strength by 50.60%, compression strength by 104.6% and micro-hardness by 50.90% were improved in HAMNC1 when compared to the base matrix. The highest values impact strength of 36.3 J was observed for HAMNC1. The elongation % was decreased by increasing the weight percentage of the nanoparticles. HAMNC1 improved the wear resistance by 23.68%, while increasing the coefficient of friction by 14.18%. Field emission scanning electron microscope analysis of the fractured surfaces of tensile samples revealed microcracks and the debonding of nanoparticles.

Originality/value

The combined effect of TiO2 and Y2O3 nanoparticles with pure Al on mechanical properties has been studied. The composites were fabricated with two-step feeding vacuum-assisted stir casting.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 April 2024

Mandeep Singh, Deepak Bhandari and Khushdeep Goyal

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze…

Abstract

Purpose

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze casting technique.

Design/methodology/approach

The hybrid aluminium matrix nanocomposites (HAMNCs) were fabricated with varying concentrations of titanium oxide (TiO2) and yttrium oxide (Y2O3), from 2.5 to 10 Wt.% in 2.5 Wt.% increments. Dry sliding wear test variables were optimized using the Taguchi method.

Findings

The introduction of hybrid nanoparticles in the aluminium (Al) matrix was evenly distributed in contrast to the base matrix. HAMNC6 (5 Wt.% TiO2 + 5 Wt.% Y2O3) reported the maximum enhancement in mechanical properties (tensile strength, flexural strength, impact strength and density) and decrease in porosity% and elongation% among other HAMNCs. The results showed that the optimal combination of parameters to achieve the lowest wear rate was A3B3C1, or 15 N load, 1.5 m/s sliding velocity and 200 m sliding distance. The sliding distance showed the greatest effect on the dry sliding wear rate of HAMNC6 followed by applied load and sliding velocity. The fractured surfaces of the tensile sample showed traces of cracking as well as substantial craters with fine dimples and the wear worn surfaces were caused by abrasion, cracks and delamination of HAMNC6.

Originality/value

Squeeze-cast Al-reinforced hybrid (TiO2+Y2O3) nanoparticles have been investigated for their impact on mechanical properties and optimization of wear parameters.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 February 2024

Jie Wan, Biao Chen, Jianghua Shen, Katsuyoshi Kondoh, Shuiqing Liu and Jinshan Li

The metallic alloys and their components fabricated via laser powder bed fusion (LPBF) suffer from the microvoids formed inevitably due to the extreme solidification rate during…

Abstract

Purpose

The metallic alloys and their components fabricated via laser powder bed fusion (LPBF) suffer from the microvoids formed inevitably due to the extreme solidification rate during fabrication, which are impossible to be removed by heat treatment. This paper aims to remove those microvoids in as-built AlSi10Mg alloys by hot forging and enhance their mechanical properties.

Design/methodology/approach

AlSi10Mg samples were built using prealloyed powder with a set of optimized LPBF parameters, viz. 350 W of laser power, 1,170 mm/s of scan speed, 50 µm of layer thickness and 0.24 mm of hatch spacing. As-built samples were preheated to 430°C followed by immediate pressing with two different thickness reductions of 10% and 35%. The effect of hot forging on the microstructure was analyzed by means of X-ray diffraction, scanning electron microscopy, electron backscattered diffraction and transmission electron microscopy. Tensile tests were performed to reveal the effect of hot forging on the mechanical properties.

Findings

By using hot forging, the large number of microvoids in both as-built and post heat-treated samples were mostly healed. Moreover, the Si particles were finer in forged condition (∼150 nm) compared with those in heat-treated condition (∼300 nm). Tensile tests showed that compared with heat treatment, the hot forging process could noticeably increase tensile strength at no expense of ductility. Consequently, the toughness (integration of tensile stress and strain) of forged alloy increased by ∼86% and ∼24% compared with as-built and heat-treated alloys, respectively.

Originality/value

Hot forging can effectively remove the inevitable microvoids in metals fabricated via LPBF, which is beneficial to the mechanical properties. These findings are inspiring for the evolution of the LPBF technique to eliminate the microvoids and boost the mechanical properties of metals fabricated via LPBF.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 37