Search results

11 – 20 of over 2000
Article
Publication date: 7 September 2015

Jakub Somer, Michal Štekovič, František Urban, Josef Šandera and Ivan Szendiuch

The purpose of this paper is to focus on a description of reliable bonding technique of zero-shrink low-temperature co-fired ceramic (LTCC) and alumina ceramics. LTCC is widely…

Abstract

Purpose

The purpose of this paper is to focus on a description of reliable bonding technique of zero-shrink low-temperature co-fired ceramic (LTCC) and alumina ceramics. LTCC is widely used for manufacturing electrical systems in 3D configuration. LTCC substrates were so far bonded with alumina ceramics using additional adhesive layers with subsequent firing or curing cycle. With the advent of the zero-shrink LTCC substrates, it is now possible to bond unfired substrates with other fired substrates, for example fired LTCC or alumina substrates. Alumina substrate in combination with LTCC brings advantages of good thermal conductivity for usage in heating elements or packaging.

Design/methodology/approach

The test structure contains a thick-film pattern for verification of the compatibility of the bonding process. We have used two methods for bonding the substrates: cold chemical lamination (CCL) and thermo compression method, using a dielectric thick-film paste as the adhesive. Optical microscopy, scanning electron microscopy and electric testing of the screen-printed patterns were used for verification of the bonding quality.

Findings

The thermo-compression method gave poor results in comparison with the CCL method. The best quality of lamination was achieved at room temperature combined with low pressure for both types of bonding materials. In addition, a possibility of using this bonding method for sensor fabrication was investigated. The ceramic pressure sensor samples with a cavity were created.

Originality/value

The possibility of bonding two different ceramic materials was investigated. A new approach to ceramic bonding showed promising results with possible use in sensors.

Details

Soldering & Surface Mount Technology, vol. 27 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 22 May 2020

Crislaine da Cruz, Ivan Mathias, Mariza Veiga Senk, Gelson Biscaia de Souza and Francisco Carlos Serbena

Lithium disilicate glass-ceramics (LS2 GC) are widely used as dental prosthetics and dental restorations. Based LS2 GC have hardness and translucency similar to that of natural…

Abstract

Purpose

Lithium disilicate glass-ceramics (LS2 GC) are widely used as dental prosthetics and dental restorations. Based LS2 GC have hardness and translucency similar to that of natural teeth. This study aims to investigate the tribological features of LS2 GC with crystalline volume fraction of 64% and different crystal sizes from 8 µm to 34 µm for different counterparts.

Design/methodology/approach

The tribological behavior was investigated using a pin-on-disc tribometer with alumina and tungsten carbide (WC) spheres, applied load of 5 N and sliding speed of 5 cm/s at normal conditions. The coefficient of friction was measured continuously up to 10,000 sliding cycles. The specific wear rate was calculated from tribological and profile measurements. The wear mechanism was investigated by surface morphology analysis.

Findings

The coefficient of friction during running-in varied from 0.8 to 1.0 for the alumina counterpart, because of severe wear. Afterwards, it reduced and reached a stationary regime, characterized by a mild wear regime and the formation of a tribolayer formed by the debris. For the WC counterpart, the coefficient of friction curves increased initially with sliding cycles up to a stationary regime. The samples tested against WC presented the lowest specific wear rate (k), and no variation of wear rate with crystal size was observed. For samples tested against the alumina, crystallization and crystal size increased the wear resistance.

Originality/value

This study evaluated the effect of different counterfaces on the tribological properties of the LS2 GC, an important glass-ceramic base for many dental prosthetics and dental restorations, discussing results in light of the contact mechanics. Different specific wear rates, wear regimes and dependence on the glass-ceramic microstructure were observed depending on the counterpart.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2019-0352/

Details

Industrial Lubrication and Tribology, vol. 72 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 March 2022

Xinlong Wei, Erguang Fu, Aolin Ban, Wy Zhu, Dl Wu, N. Li and C. Zhang

The purpose of this paper is to investigate the effect of nano-alumina sealant sealing treatment on corrosion behavior of the Fe-based amorphous coatings deposited on 304…

Abstract

Purpose

The purpose of this paper is to investigate the effect of nano-alumina sealant sealing treatment on corrosion behavior of the Fe-based amorphous coatings deposited on 304 stainless steel plates by atmospheric plasma spraying (APS) with different hydrogen flow rates.

Design/methodology/approach

The surface morphology and microstructure of the unsealed and sealed coatings were characterized by scanning electron microscopy and X-ray diffraction. The corrosion resistance of the coatings was investigated by potentiodynamic polarization test and electrochemical impedance spectroscopy experiment in 3.5 Wt.% NaCl solution.

Findings

Results show that a few microcracks and pores exist in the as-sprayed Fe-based amorphous coatings. The pores on the surface of the coatings after sealing treatment have been filled with nano-alumina sealant, which can effectively prevent corrosive medium from entering into coatings. Electrochemical tests results show that the corrosion resistance of the coatings before sealing treatment decreases with the increase of hydrogen flow rate and is significantly improved by sealing treatment.

Originality/value

The effect of nano-alumina sealant sealing treatment on corrosion resistance of APS-sprayed Fe-based amorphous coatings is revealed. The corrosion resistance of the as-sprayed Fe-based amorphous coating can be significantly improved by nano-alumina sealant sealing treatment because of the blocking effect of nano-alumina sealant on corrosive medium, which confirms that the application of nano-alumina sealant sealing treatment is of a practical option to improve corrosion resistance of as-sprayed thermal sprayed coatings.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 September 1998

C. Hinczewski, S. Corbel and T. Chartier

Ceramic three‐dimensional parts can be produced by a stereolithography (SL) process using a ceramic suspension containing alumina powder, UV curable monomer, diluent…

2159

Abstract

Ceramic three‐dimensional parts can be produced by a stereolithography (SL) process using a ceramic suspension containing alumina powder, UV curable monomer, diluent, photoinitiator and dispersant. The monomer reacts to UV radiation (argon ionized laser) and is transformed into a solid polymer which is then removed by thermal treatment (debinding). Subsequent sintering of green parts leads to dense ceramic parts. The effect of each component on the rheology of the alumina suspensions has been studied first. Both the addition of dispersant and diluent and the increase in temperature allow a significant decrease of the viscosity of the suspensions. The highly loaded (more than 55 vol. per cent), homogeneous and stable suspensions have a shear thinning behaviour which is favourable for casting the layers. Adequate cured depth (above 200μm) and satisfactory transversal resolution have been obtained and these allow the production of ceramic parts, which demonstrates the feasibility of the process. Sintering at 1,580°C leads to dense ceramic parts with homogeneous microstructure. The process still needs to be optimized to improve even more the mechanical properties.

Details

Rapid Prototyping Journal, vol. 4 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 August 2021

Anas Islam, Shashi Prakash Dwivedi and Vijay Kumar Dwivedi

This paper aims to extract the Cr from chrome containing leather waste (CCLW) in order to develop composite at optimum casting parameters using RSM technique. Chrome containing…

Abstract

Purpose

This paper aims to extract the Cr from chrome containing leather waste (CCLW) in order to develop composite at optimum casting parameters using RSM technique. Chrome containing leather wastes (CCLW) is one of the significant cause of pollution that is exhaled by the leather industries. One of the technique to address the problem of pollution that is created by CCLW is to recycle it and produce some fruitful results from it. This will not only minimize the levels of harmful emissions to some extent but also give some befitting results.

Design/methodology/approach

The current work is all about exploring the ways by which CCLW could be used as a reinforcing material with aluminum. In this work, alumina has been used as a secondary reinforcement particle together with CCLW as with the help of stir casting process. The parameters of stir casting have been optimized by using “Response Surface Methodology.”

Findings

To maximize the hardness and tensile strength the values of optimal input casting parameters as found by the experimental results (response surface methodology) are as follows: the pre-heating temperature of collagen and alumina must be 166 °C and 300 °C, respectively, while the wt.% of collagen and alumina present in the matrix must be 2.45% and 5% sequentially 180 s of stirring time.

Originality/value

The hardness of the finally tested composite is 67.12 BHN (approx) which has been enhanced by 52.54% as compared to the base material. Tensile strength of composite also enhanced about 18% with respect to base material developed at the optimum combination of casting parameters.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 October 2018

Qiuping Yang, Huizhi Li, Yubo Zhai, Xiaofeng Li and Peizhi Zhang

To prepare a new type of composite for selective laser sintering 3D printing, the surface of Al2O3 nanoparticles was modified by the coupling agent…

Abstract

Purpose

To prepare a new type of composite for selective laser sintering 3D printing, the surface of Al2O3 nanoparticles was modified by the coupling agent (3-methacryloxypropyl)-trimethoxy silane (KH570) before coated with thermoplastic epoxy resin (TER).

Design/methodology/approach

Laser diffraction confirmed that the size distribution of prepared powder materials in this study ranged between 20 to 80 µm. Thermogravimetric analysis (TGA) showed that the loading of organic matter was below 5 per cent. Fourier transform infrared spectroscopy indicated that the silane coupling agent molecule bound strongly with the alumina. X-ray diffraction confirmed the prepared powder materials to be α-alumina. Through the angle of repose (AOR) test, the AOR = 18.435º was obtained, suggesting the high flowability of prepared powder materials. Scanning electron microscopy (SEM) observation demonstrated that the shape of the prepared powder materials was sphere-like grains.

Findings

Molding properties of prepared powder materials were studied on the basis of particle size distribution, particle size, sphericity, crystal structure and the reaction mode of the TER. This prepared powder materials can be well applied to the production of epoxy resin-coated Al2O3 composite parts with high precision and good mechanical performance.

Originality/value

This composite can be well applied to the production of epoxy resin-coated Al2O3 composite parts with high precision and good mechanical performance.

Details

Rapid Prototyping Journal, vol. 24 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 2007

M. Grujicic, B. Pandurangan, U. Zecevic, K.L. Koudela and B.A. Cheeseman

The ability of light‐weight all fiber‐reinforced polymer‐matrix composite armor and hybrid composite‐based armor hard‐faced with ceramic tiles to withstand the impact of a…

Abstract

The ability of light‐weight all fiber‐reinforced polymer‐matrix composite armor and hybrid composite‐based armor hard‐faced with ceramic tiles to withstand the impact of a non‐Armor‐ Piercing (non‐AP) and AP projectiles is investigated using a transient non‐linear dynamics computational analysis. The results obtained confirm experimental findings that the all‐composite armor, while being able to successfully defeat non‐AP threats, provides very little protection against AP projectiles. In the case of the hybrid armor, it is found that, at a fixed overall areal density of the armor, there is an optimal ratio of the ceramic‐to‐composite areal densities which is associated with a maximum ballistic armor performance against AP threats. The results obtained are rationalized using an analysis based on the shock/blast wave reflection and transmission behavior at the hard‐face/air, hard‐face/backing and backing/air interfaces, projectiles’ wear and erosion and the intrinsic properties of the constituent materials of the armor and the projectiles.

Details

Multidiscipline Modeling in Materials and Structures, vol. 3 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 May 2006

Salwa H. El‐Sabbagh, Nivin M. Ahmed and Mohamed M. Selim

A new method for modifying the properties of aluminium oxide had been developed which allowed alumina to be used as a white, reinforcing filler in various rubber composites to…

Abstract

Purpose

A new method for modifying the properties of aluminium oxide had been developed which allowed alumina to be used as a white, reinforcing filler in various rubber composites to replace carbon black, producing high performance white rubber vulcanizates comparable to those loaded with carbon black that could be coloured if needed.

Design/methodology/approach

Alumina was treated with small amounts of ammonium molybdate. Characterisation of modified aluminium oxide was carried out using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Also, evaluation of the pigments prepared, in terms of oil absorption, specific gravity, and bulking value using international standard testing methods was performed. The morphology of the natural rubber composites loaded with the new modified alumina were studied using SEM. Kraus equation was used to analyse the extent of polymer‐pigment interaction, while Mooney‐Rivlin relation was employed to study the near equilibrium stress‐strain behaviour.

Findings

The results showed that, the pigment had a significant effect on the rheological characteristics (scorch, cure time, etc.), mechanical properties, stress and strain at yield and at rupture of white rubber vulcanizates prepared resulting in high performance.

Research limitations/implications

As concentration of molybdenum oxide increased in the alumina crystals, the reinforcing effect in rubber composites also increased till an optimum concentration where such a reinforcing effect reversed. However, investigation of the application of these pigments in other systems such as an anticorrosive pigment in paint formulations and reinforcing filler in polyester composites could also be interesting.

Practical implications

The pigments prepared could be used as reinforcing filler in plastic composites and also as anticorrosive pigment in paint formulations.

Originality/value

Aluminium oxide is a cheap compound. The originality of the work lay in the finding that by adding trace amounts of molybdenym to it, aluminium oxide's properties changed dramatically resulting in more effective action in reinforcing rubber composites filled with such modified alumina, producing white rubber composites with comparable properties to those loaded with carbon black, and may exceed them in some cases. This allowed the preparation of coloured rubber with good rheological and physical properties.

Details

Pigment & Resin Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 November 2021

Kai-Uwe Garthe, Kay-Peter Hoyer, Leif Hagen, Wolfgang Tillmann and Mirko Schaper

The currently existing restrictions regarding the deployment of additively manufactured components because of poor surface roughness, porosity and residual stresses as well as…

243

Abstract

Purpose

The currently existing restrictions regarding the deployment of additively manufactured components because of poor surface roughness, porosity and residual stresses as well as their influence on the low-cycle fatigue (LCF) strength are addressed in this paper.

Design/methodology/approach

This study aims to evaluating the effect of different pre- and post-treatments on the LCF strength of additively manufactured 316L parts. Therefore, 316L specimens manufactured by laser powder bed fusion were examined in their as-built state as well as after grinding, or coating with regard to the surface roughness, residual stresses and LCF strength. To differentiate between topographical effects and residual stress-related phenomena, stress-relieved 316L specimens served as a reference throughout the investigations. To enable an alumina coating of the 316L components, atmospheric plasma spraying was used, and the near-surface residual stresses and the surface roughness are measured and investigated.

Findings

The results have shown that the applied pre- and post-treatments such as stress-relief heat treatment, grinding and alumina coating have each led to an increase in LCF strength of the 316L specimens. In contrast, the non-heat-treated specimens predominantly exhibited coating delamination.

Originality/value

To the best of the authors’ knowledge, this is the first study of the correlation between the LCF behavior of additively manufactured uncoated 316L specimens in comparison with additively manufactured 316L specimens with an alumina coating.

11 – 20 of over 2000