Search results

1 – 10 of over 6000
Article
Publication date: 19 July 2022

Fanjie Zhou, Chunmei Ma, Yuheng Zhang, Jialu Wang and Huadong Fu

This study aims to control the oxidation resistance of Co-based deformed superalloys by adding trace elements Hf and Si.

Abstract

Purpose

This study aims to control the oxidation resistance of Co-based deformed superalloys by adding trace elements Hf and Si.

Design/methodology/approach

The effects and mechanism of trace elements Hf and Si on the oxidation behavior of Co-Ni-Al-W-based forged superalloys were investigated by cyclic oxidation at 900°C.

Findings

The results show that the addition of trace elements Hf and Si does not affect the type of surface oxides of Co-Ni-based superalloys, and the oxidation layers of the alloys are TiO2, spinel, Cr2O3, TaTiO4, Al2O3 and TiN from outside to inside. However, the addition of elements can affect the activity of Cr and Ti elements; decrease the formation of TiO2 and TaTiO4 layers, which are harmful to the oxidation performance; and then improve the oxidation resistance of the alloy.

Originality/value

The relevant research results can not only optimize the microalloying element content of Co-Ni-Al-W-based superalloys, but also provide a new perspective for the composition optimization design of superalloys.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 April 2022

Lina Syazwana Kamaruzzaman and Yingxin Goh

This paper aims to review recent reports on mechanical properties of Sn-Bi and Sn-Bi-X solders (where X is an additional alloying element), in terms of the tensile properties…

Abstract

Purpose

This paper aims to review recent reports on mechanical properties of Sn-Bi and Sn-Bi-X solders (where X is an additional alloying element), in terms of the tensile properties, hardness and shear strength. Then, the effects of alloying in Sn-Bi solder are compared in terms of the discussed mechanical properties. The fracture morphologies of tensile shear tested solders are also reviewed to correlate the microstructural changes with mechanical properties of Sn-Bi-X solder alloys.

Design/methodology/approach

A brief introduction on Sn-Bi solder and reasons to enhance the mechanical properties of Sn-Bi solder. The latest reports on Sn-Bi and Sn-Bi-X solders are combined in the form of tables and figures for each section. The presented data are discussed by comparing the testing method, technical setup, specimen dimension and alloying element weight percentage, which affect the mechanical properties of Sn-Bi solder.

Findings

The addition of alloying elements could enhance the tensile properties, hardness and/or shear strength of Sn-Bi solder for low-temperature solder application. Different weight percentage alloying elements affect differently on Sn-Bi solder mechanical properties.

Originality/value

This paper provides a compilation of latest report on tensile properties, hardness, shear strength and deformation of Sn-Bi and Sn-Bi-X solders and the latest trends and in-depth understanding of the effect of alloying elements in Sn-Bi solder mechanical properties.

Details

Soldering & Surface Mount Technology, vol. 34 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 27 May 2014

Ervina Efzan Mhd Noor and Amares Singh

The aim of the present study was to gather and review all the important properties of the Sn–Ag–Cu (SAC) solder alloy. The SAC solder alloy has been proposed as the alternative…

Abstract

Purpose

The aim of the present study was to gather and review all the important properties of the Sn–Ag–Cu (SAC) solder alloy. The SAC solder alloy has been proposed as the alternative solder to overcome the environmental concern of lead (Pb) solder. Many researchers have studied the SAC solder alloy and found that the properties such as melting temperature, wettability, microstructure and interfacial, together with mechanical properties, are better for the SAC solder than the tin – lead (SnPb) solders. Meanwhile, addition of various elements and nanoparticles seems to produce enhancement on the prior bulk solder alloy as well. These benefits suggest that the SAC solder alloy could be the next alternative solder for the electronic packaging industry. Although many studies have been conducted for this particular solder alloy, a compilation of all these properties regarding the SAC solder alloy is still not available for a review to say.

Design/methodology/approach

Soldering is identified as the metallurgical joining method in electronic packaging industry which uses filler metal, or well known as the solder, with a melting point < 425°C (Yoon et al., 2009; Ervina and Marini, 2012). The SAC solder has been developed by many methods and even alloying it with some elements to enhance its properties (Law et al., 2006; Tsao et al., 2010; Wang et al., 2002; Gain et al., 2011). The development toward miniaturization, meanwhile, requires much smaller solder joints and fine-pitch interconnections for microelectronic packaging in electronic devices which demand better solder joint reliability of SAC solder Although many studies have been done based on the SAC solder, a review based on the important characteristics and the fundamental factor involving the SAC solder is still not sufficient. Henceforth, this paper resolves in stating all its important properties based on the SAC solder including its alloying of elements and nanoparticles addition for further understanding.

Findings

Various Pb-free solders have been studied and investigated to overcome the health and environmental concern of the SnPb solder. In terms of the melting temperature, the SAC solder seems to possess a high melting temperature of 227°C than the Pb solder SnPb. Here, the melting temperature of this solder falls within the range of the average reflow temperature in the electronic packaging industry and would not really affect the process of connection. A good amendment here is, this melting temperature can actually be reduced by adding some element such as titanium and zinc. The addition of these elements tends to decrease the melting temperature of the SAC solder alloy to about 3°C. Adding nanoparticles, meanwhile, tend to increase the melting temperature slightly; nonetheless, this increment was not seemed to damage other devices due to the very slight increment and no drastic changes in the solidification temperature. Henceforth, this paper reviews all the properties of the Pb-free SAC solder system by how it is developed from overcoming environmental problem to achieving and sustaining as the viable candidate in the electronic packaging industry. The Pb-free SAC solder can be the alternative to all drawbacks that the traditional SnPb solder possesses and also an upcoming new invention for the future needs. Although many studies have been done in this particular solder, not much information is gathered in a review to give better understanding for SAC solder alloy. In that, this paper reviews and gathers the importance of this SAC solder in the electronic packaging industry and provides information for better knowledge.

Originality/value

This paper resolves in stating of all its important properties based on the SAC solder including its alloying of elements and nanoparticles addition for further understanding.

Details

Soldering & Surface Mount Technology, vol. 26 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 2 August 2021

Modupeola Dada, Patricia Popoola and Ntombi Mathe

This study aims to review the recent advancements in high entropy alloys (HEAs) called high entropy materials, including high entropy superalloys which are current potential…

1475

Abstract

Purpose

This study aims to review the recent advancements in high entropy alloys (HEAs) called high entropy materials, including high entropy superalloys which are current potential alternatives to nickel superalloys for gas turbine applications. Understandings of the laser surface modification techniques of the HEA are discussed whilst future recommendations and remedies to manufacturing challenges via laser are outlined.

Design/methodology/approach

Materials used for high-pressure gas turbine engine applications must be able to withstand severe environmentally induced degradation, mechanical, thermal loads and general extreme conditions caused by hot corrosive gases, high-temperature oxidation and stress. Over the years, Nickel-based superalloys with elevated temperature rupture and creep resistance, excellent lifetime expectancy and solution strengthening L12 and γ´ precipitate used for turbine engine applications. However, the superalloy’s density, low creep strength, poor thermal conductivity, difficulty in machining and low fatigue resistance demands the innovation of new advanced materials.

Findings

HEAs is one of the most frequently investigated advanced materials, attributed to their configurational complexity and properties reported to exceed conventional materials. Thus, owing to their characteristic feature of the high entropy effect, several other materials have emerged to become potential solutions for several functional and structural applications in the aerospace industry. In a previous study, research contributions show that defects are associated with conventional manufacturing processes of HEAs; therefore, this study investigates new advances in the laser-based manufacturing and surface modification techniques of HEA.

Research limitations/implications

The AlxCoCrCuFeNi HEA system, particularly the Al0.5CoCrCuFeNi HEA has been extensively studied, attributed to its mechanical and physical properties exceeding that of pure metals for aerospace turbine engine applications and the advances in the fabrication and surface modification processes of the alloy was outlined to show the latest developments focusing only on laser-based manufacturing processing due to its many advantages.

Originality/value

It is evident that high entropy materials are a potential innovative alternative to conventional superalloys for turbine engine applications via laser additive manufacturing.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 August 2003

G.E. Thompson, P. Skeldon, X. Zhou, K. Shimizu, H. Habazaki and C.J.E. Smith

This paper reviews the role of alloying elements in aluminium and alloy fabrication on performance during surface treatment and surface finishing. Such elements may be present in…

2994

Abstract

This paper reviews the role of alloying elements in aluminium and alloy fabrication on performance during surface treatment and surface finishing. Such elements may be present in solid solution as fine segregates, strengthening phase and equilibrium phases. For surface treatment and finishes, which generally proceed in the presence of alumina film, knowledge of the processes proceeding at the alloy/film and film/electrolyte interfaces, and those within anodic alumina films, gives rise to the possibility of controlling features of nanoscale dimensions, for improved performance, arises. Its influence on nanotextures at treated surfaces and compositionally and morphologically modified films is explained briefly.

Details

Aircraft Engineering and Aerospace Technology, vol. 75 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 June 1999

G.E. Thompson, H. Habazaki, K. Shimizu, M. Sakairi, P. Skeldon, X. Zhou and G.C. Wood

Anodizing is used widely in the surface treatment of aluminium alloys for aerospace applications. Considers recent advances in understanding of the influences of alloying elements

2341

Abstract

Anodizing is used widely in the surface treatment of aluminium alloys for aerospace applications. Considers recent advances in understanding of the influences of alloying elements in anodizing of aluminium alloys and, in particular, their applicability to second phase particles during anodizing of commercial alloys. Through more precise knowledge of the response of second phase materials to anodic polarization, improved anodizing and related surface treatment processes may be developed in order to enhance the performance of aluminium alloys.

Details

Aircraft Engineering and Aerospace Technology, vol. 71 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 24 November 2020

Seyed Mohammad Hossein Mousavian, Seyed Hadi Tabaian and Mohammadhassan Badihehaghdam

The effect of zirconium, zinc, calcium and rare earth group as the alloying elements on mechanical properties and corrosion behavior of magnesium alloys was investigated in the…

Abstract

Purpose

The effect of zirconium, zinc, calcium and rare earth group as the alloying elements on mechanical properties and corrosion behavior of magnesium alloys was investigated in the simulated body fluid.

Design/methodology/approach

Pure magnesium and the alloying elements were melted and zirconium was finally added to obtain different alloys. The castings were annealed and some samples were aged heat treated. X-ray fluorescence was used for the elemental analysis and LSV was used for electrochemical corrosion evaluations.

Findings

Results showed that corrosion resistance decreases with increasing zirconium content. The lowest corrosion rate was obtained for the samples containing 0.3% and 0.45% of Zr from annealed and aging heat-treated samples, respectively. Yield stress enhances with increasing the zirconium content and degrades by the aging heat treatment.

Originality/value

These alloys were studied for the first time. Effect of casting without using protective flux and vacuum furnaces. Effect of annealing at 440°C for 2 h and artificial aging at 200°C for 16 h. Alloy’s electrochemical behavior on the body’s simulation environment has been investigated. Improvement of mechanical properties after annealing heat treatment by high zirconium percentage.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 19 September 2008

K. Bukat, J. Sitek, R. Kisiel, Z. Moser, W. Gasior, M. Kościelski and J. Pstruś

The purpose of this paper is a comparable evaluation of the influence of a particular element (Bi and Sb) added to Sn‐Ag‐Cu and Sn‐Zn alloys on their surface and interfacial…

Abstract

Purpose

The purpose of this paper is a comparable evaluation of the influence of a particular element (Bi and Sb) added to Sn‐Ag‐Cu and Sn‐Zn alloys on their surface and interfacial tensions, as well as the wetting properties on the Cu substrate expressed by the wetting angle.

Design/methodology/approach

The authors applied the L8 orthogonal Taguchi array to carry out the experiments and discussed the results using analysis of variance (ANOVA).

Findings

It was expected, on the base of previous studies, the decrease of the surface and interfacial tensions and thus improving wettability after the Bi and Sb addition to Sn‐Ag‐Cu and Sn‐Zn alloys. Unfortunately, the obtained results on the quinary Sn‐Ag‐Cu‐Bi‐Sb alloys and the quaternary Sn‐Zn‐Bi‐Sb alloys do not confirm these trends. The performed analyses suggest that the compositions of the quinary Sn‐Ag‐Cu‐Bi‐Sb alloys, as well as the quaternary Sn‐Zn‐Bi‐Sb alloys, do not have optimal compositions for practical application. The Cu, Bi and Sb elements in the case of the Sn‐Ag‐Cu‐Bi‐Sb alloys and the Zn, Bi and Sb elements in the case of the Sn‐Zn‐Bi‐Sb alloys show mutual interaction and, in consequence, there is no correlation between the tendency of the surface and interfacial tensions changes and the wettings of the Cu substrate.

Research limitations/implications

It is suggested that further studies are necessary for the purpose of the practical application, but they should be limited mainly to the Sn‐Ag‐Cu‐Bi and the Sn‐Zn‐Bi alloys with the optimal compositions.

Practical implications

The performed analysis suggests that none of the investigated compositions of the quinary Sn‐Ag‐Cu‐Bi‐Sb alloys, as well as the quaternary Sn‐Zn‐Bi‐Sb alloys, have the optimal compositions for practical application.

Originality/value

The quickest way to determine which element of the alloy composition influences the surface tension and the wetting properties, and how, is to apply orthogonal analysis. After choosing the orthogonal array, the experiments were performed and analysis of variance (ANOVA) was used to perform the quantifiable analysis of the measured and calculated results of surface and interfacial tensions, as well as the wetting properties on the Cu substrate.

Details

Soldering & Surface Mount Technology, vol. 20 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 26 March 2024

Haichao Wang, Xiaoqiang Liu, Zhanjiang Li, Li Chen, Pinqiang Dai and Qunhua Tang

The purpose of this paper is to study the high temperature oxidation behavior of Ti and C-added FeCoCrNiMn high entropy alloys (HEAs).

Abstract

Purpose

The purpose of this paper is to study the high temperature oxidation behavior of Ti and C-added FeCoCrNiMn high entropy alloys (HEAs).

Design/methodology/approach

Cyclic oxidation method was used to obtain the oxidation kinetic profile and oxidation rate. The microstructures of the surface and cross section of the samples after oxidation were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM).

Findings

The results show that the microstructure of the alloy mainly consisted of FCC (Face-centered Cubic Structure) main phase and carbides (M7C3, M23C6 and TiC). With the increase of Ti and C content, the microhardness, strength and oxidation resistance of the alloy were effectively improved. After oxidation at a constant temperature of 800 °C for 100 h, the preferential oxidation of chromium in the chromium carbide determined the early formation of dense chromium oxide layers compared to the HEAs substrate, resulting in the optimal oxidation resistance of the TC30 alloy.

Originality/value

More precipitated CrC can preferentially oxidize and rapidly form a dense Cr2O3 layer early in the oxidation, which will slow down the further oxidation of the alloy.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 January 1993

P.G. Harris and M.A. Whitmore

This is the first of two papers reporting work carried out under a programme sponsored by the Department of Trade and Industry (DTI), involving collaboration between the…

Abstract

This is the first of two papers reporting work carried out under a programme sponsored by the Department of Trade and Industry (DTI), involving collaboration between the International Tin Research Institute, GEC‐Marconi Ltd, BNR (Europe) Ltd and Multicore Solders Ltd. Part 1 describes the methodology used to select a number of candidate alloys as possible suitable lead‐free alternatives to tin‐lead solder.

Details

Circuit World, vol. 19 no. 2
Type: Research Article
ISSN: 0305-6120

1 – 10 of over 6000