Search results

1 – 10 of over 1000
Article
Publication date: 13 September 2011

Kasturie Premlall, J. Herman Potgieter and S. Potgieter‐Vermaak

The effect of chlorides on corrosion of reinforcing steel is well documented in the literature. However, few studies have focused attention on the effect of sulphates on the…

Abstract

Purpose

The effect of chlorides on corrosion of reinforcing steel is well documented in the literature. However, few studies have focused attention on the effect of sulphates on the corrosion of low carbon steel in alkaline media. This paper aims to address this issue.

Design/methodology/approach

This paper describes the results of the investigation into the corrosion behaviour of low carbon steel (typically used as reinforcing steel), exposed to alkaline media at a pH of 9 and 12 with varying concentrations of sulphate and chloride ions, as well as, in sulphate only solutions. An attempt was made to inhibit corrosion of steel exposed to the corrosive media using laser surface treatment of the steel specimens. Mass loss tests and electrochemical tests were conducted to evaluate the effect of sulphate only and the combined effect of sulphate and chloride ions in an alkaline media on steel.

Findings

It was found that sulphate ions could cause corrosion of steel in alkaline media. The severity of the attack increased with increasing sulphate ion concentrations, as well as with combinations of sulphate and chloride ions. The pH 12 conditions seem to show much more critical attack with evidence of pitting corrosion as compared to uniform corrosion for test conditions at a pH of 9. The attempt to inhibit the observed corrosion of steel exposed to the corrosive high alkaline media containing sulphate ions on their own and in combination of chloride ions by laser surface treatment proved to be successful.

Originality/value

The research undertaken here adds to the body of knowledge relating to the effect of sulphate ions on reinforcing steel corrosion in highly alkaline media. Most literature points out that sulphate ions on their own do not have a corrosive effect, but rather, a passivating effect!

Details

Anti-Corrosion Methods and Materials, vol. 58 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 January 2007

E.E. Oguzie, G.N. Onuoha and E.N. Ejike

This paper aims to appraise the effectiveness of Gongronema latifolium extract as an environmentally friendly corrosion inhibitor for aluminium in strong acid (2 M HCl) and…

Abstract

Purpose

This paper aims to appraise the effectiveness of Gongronema latifolium extract as an environmentally friendly corrosion inhibitor for aluminium in strong acid (2 M HCl) and alkaline (2 M KOH) environments.

Design/methodology/approach

Corrosion rates were determined using the gas‐volumetric technique. The efficiency of inhibition was estimated by comparing corrosion rates in absence and presence of the additive, while the mechanism of inhibition was assessed by considering temperature effects on corrosion and inhibition processes.

Findings

The results show that the extract was well adsorbed on the metal surface and significantly repressed aluminium corrosion in both environments. Inhibition efficiency generally increased with concentration up to maximum values of 97.54 and 90.82 per cent in 2 M HCl and 2 M KOH, respectively. Temperature dependence studies revealed that the extract was chemically adsorbed on the aluminium surface at all concentrations in 2 M HCl and physically adsorbed in 2 M KOH, with likely tendency to become chemisorbed at higher concentration.

Originality/value

Gongronema latifolium has been studied for the first time as an inhibitor of aluminium corrosion and the results suggest that the extract could find practical application in corrosion control in aqueous acidic and alkaline environments. The findings are particularly useful, considering the scarcity of reports on the effective inhibition of aluminium corrosion in strong alkaline solutions.

Details

Pigment & Resin Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 October 2005

E.E. Oguzie, G.N. Onuoha and A.I. Onuchukwu

To investigate the inhibitive effect of Congo red dye (CR) for aluminium corrosion in strong alkaline solutions and evaluate the synergistic effect of halide ions on the…

Abstract

Purpose

To investigate the inhibitive effect of Congo red dye (CR) for aluminium corrosion in strong alkaline solutions and evaluate the synergistic effect of halide ions on the inhibition efficiency.

Design/methodology/approach

Corrosion rates of aluminium test coupons were determined by gravimetric technique at 30 and 60°C. Inhibition efficiencies of the additives (0.01‐5.0 mM CR and 5.0 mM CR+0.5 mM halides) were evaluated by comparing corrosion rates of the test coupons in 2 M KOH solution in the absence and presence of the additives.

Findings

CR inhibited aluminium corrosion in 2 M KOH by physical adsorption of the dye molecules on the corroding metal surface. Maximum efficiency at 30 and 60°C was 31.72 and 19.32 per cent, respectively. Dye adsorption was enhanced in the presence of halides in the order KCl < KBr < KI, with KI increasing efficiency up to 48.63 and 41.70 per cent at 30 and 60°C, respectively.

Research limitations/implications

Further studies to involve variation of dye and halide concentrations for CR+halide systems to determine the best combination for optimum inhibition synergism.

Originality/value

This paper forms part of an extensive database on the inhibition characteristics of organic dyes for corrosion of different metals in various aggressive environments. This is to serve as a guide to possible applications in metal‐surface anodizing and as additives in surface coatings for service in different environments.

Details

Anti-Corrosion Methods and Materials, vol. 52 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 November 1986

Zaki Ahmad

The relatively complex corrosion mechanism of aluminium has been studied by several authors. Corrosion of aluminium occurs only when the metal protective oxide layer is damaged…

Abstract

The relatively complex corrosion mechanism of aluminium has been studied by several authors. Corrosion of aluminium occurs only when the metal protective oxide layer is damaged and when the repair mechanism is prevented by chemical dissolution. Polarization methods have been extensively used to investigate the mechanism of localised corrosion and processes that lead to localised corrosion. The potential‐pH diagrams are shown in Fig. 1A. In using potentiostatic techniques, the potential is controlled and current is determined as the independent variable. Potentiostatic and potentiody‐namic techniques have been applied by several authors to study the corrosion of aluminium in different environment. Both anodic and cathodic polarization curves have been used to interpret the kinetics of pitting corrosion of aluminium in chloride containing environments. Both the anodic and cathodic process are complex and the interpretation of the anodic and cathodic polarization curves of aluminium is often tedious. The situation arises partly from the fact that the role of film formation on the kinetics of corrosion is not clearly understood. Previously there is not established mechanisms of initiation and propagation of pits in aluminium and its alloys. Several parameters such as pitting potential, breakdown potential, active passive transition potential, related to the pitting process of aluminium, are full of controversy. Numerous references on the above can be found in literature).

Details

Anti-Corrosion Methods and Materials, vol. 33 no. 11
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 27 May 2014

Reena Kumari P.D., Jagannath Nayak and A. Nityananda Shetty

The purpose of this paper is to report the studies on the corrosion inhibition property of 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol (APTT) for the corrosion of 6061 Al-15 vol…

Abstract

Purpose

The purpose of this paper is to report the studies on the corrosion inhibition property of 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol (APTT) for the corrosion of 6061 Al-15 vol. pct. SiC(p) composite.

Design/methodology/approach

The corrosion behavior of 6061 Al-15 vol. pct. SiC(p) composite was studied at different temperatures in 0.5-M sodium hydroxide (NaOH) solution in the presence of APTT by potentiodynamic polarization (PDP) and electrochemical impedance spectroscopic techniques. The effect of inhibitor concentration and temperature on the inhibitor effect of APTT was studied. The surface morphology of the metal surface was investigated by scanning electron microscopy. The activation parameters for the corrosion of the composite and base alloy, as well as the thermodynamic parameters for the adsorption of APTT on the composite and alloy surfaces, were calculated.

Findings

The inhibition efficiency of APTT increases with the increase in the concentration of the inhibitor and decreases with the increase in temperature. The adsorption of APTT on the composite was found to be through physisorption, obeying Langmuir’s adsorption isotherm. APTT acts as a mixed inhibitor with predominant cathodic action on the composite.

Practical implications

APTT can be used as an inhibitor for the corrosion of 6061 Al-15 vol. pct. SiC(p) composite in the NaOH medium.

Originality/value

This paper provides information regarding the corrosion inhibition property of APTT on 6061 Al-15 vol. pct. SiC(p) composite. An attempt was made to explain the mechanism of the inhibition action by APTT.

Details

Anti-Corrosion Methods and Materials, vol. 61 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 October 1958

U.S.A. Effect of corrosion on the gas permeability of nickel electrodeposits. To determine plating failures due to porosity and relation of gas permeability, authors used…

Abstract

U.S.A. Effect of corrosion on the gas permeability of nickel electrodeposits. To determine plating failures due to porosity and relation of gas permeability, authors used modification of low pressure‐constant overpressure method and photographic technique as used in AES Projects 6 and 13. Initial permeability was determined for bright, Watts' type, cobalt‐nickel, sulphamate, and nickel + chromium electrodeposited films. Results are presented for corrosion of these films in 10% sulphuric acid and for Pinner‐Pierce anodic corrosion test in 3% sodium chloride solution. Although it has been demonstrated that consistent results can be obtained by this method and that there is definite difference between metallurgical nickel and electrodeposited nickel with respect to permeability of helium gas, it is not possible to correlate gas permeability of thin foils required for such permeability measurements with service corrosion characteristics of nickel electrodeposits, in that Watts and cobalt‐nickel deposits (considered more corrosion resistant than organic nickel deposits), showed both greater initial porosity and more rapid increase in porosity under accelerated corrosion tests than did organic bright nickel deposits. Tables, graphs.—(D. G. Foulke and J. M. Tobin, Tech. Proc. AES, 1956, 234–238.)

Details

Anti-Corrosion Methods and Materials, vol. 5 no. 10
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 31 December 2015

Wilfrido Martinez-Molina, Andres Torres-Acosta, Rosalba Hernández-Leos, Elia Alonso-Guzman, Itzel Mendoza-Pérez and Itandehui Martinez-Peña

The purpose of this paper is to determine if a type of cactus mucilage, Opuntia ficus-indica (OFI), may act as a corrosion inhibitor for carbon steel in cement-based materials…

Abstract

Purpose

The purpose of this paper is to determine if a type of cactus mucilage, Opuntia ficus-indica (OFI), may act as a corrosion inhibitor for carbon steel in cement-based materials (mortar) exposed to chloride-laden environment.

Design/methodology/approach

Mortar prisms, reinforced with carbon steel rods, were immersed in sodium chloride (NaCl) solution for five wet – dry cycles. The experimentation included electrochemical monitoring (corrosion potential, Ecorr, and polarization resistance, Rp) of carbon steel during the time of exposure until corrosion-induced cracking appeared at the mortar surface. Crack survey on the mortar prisms was performed. Carbon steel rods were retrieved from the mortar after crack survey and steel mass loss at the end of the experimental period was estimated. A comparison between the different mixtures was also performed.

Findings

OFI mucilage did perform as a corrosion inhibitor of steel in chloride contaminated mortar.

Research limitations/implications

The experimental program needs to be corroborated in concrete specimens with typical dimensions. The surface oxide/hydroxide formation of the carbon steel in contact with the OFI mucilage is still unknown; thus, electrochemical impedance spectroscopy (EIS) and X-ray diffraction (XRD) analyses are needed.

Practical implications

OFI mucilage is a suitable natural product that can be used to increase durability of concrete structures not only in countries where OFI cactus is produced, but also in many other countries where this plant is considered a plague.

Originality/value

The new information obtained from this paper is the innovative use of a by-product of this cactus plant for construction industry applications.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 18 February 2019

Muhammad Firdaus Mohd Nazeri, Muhamad Zamri Yahaya, Ali Gursel, Fakhrozi Cheani, Mohamad Najmi Masri and Ahmad Azmin Mohamad

The purpose of this paper is to review and examine three of the most common corrosion characterization techniques specifically on Sn-Zn solders. The discussion will highlight the…

1046

Abstract

Purpose

The purpose of this paper is to review and examine three of the most common corrosion characterization techniques specifically on Sn-Zn solders. The discussion will highlight the configurations and recent developments on each of the compiled characterization techniques of potentiodynamic polarization, potentiostatic polarization and electrochemical impedance spectroscopy (EIS).

Design/methodology/approach

The approach will incorporate a literature review of previous works related to the experimental setups and common parameters.

Findings

The potentiostatic polarization, potentiodynamic polarization and EIS were found to provide crucial and vital information on the corrosion properties of Sn-Zn solders. Accordingly, this solder relies heavily on the amount of Zn available because of the inability to produce the intermetallic compound in between the elements. Further, the excellent mechanical properties and low melting temperature of the Sn-Zn solder is undeniable, however, the limitations regarding corrosion resistance present opportunities in furthering research in this field to identify improvements. This is to ensure that the corrosion performance can be aligned with the outstanding mechanical properties. The review also identified and summarized the advantages, recent trends and important findings in this field.

Originality/value

The unique challenges and future research directions regarding corrosion measurement in Sn-Zn solders were shown to highlight the rarely discussed risks and problems in the reliability of lead-free soldering. Many prior reviews have been undertaken of the Sn-Zn system, but limited studies have investigated the corrosive properties. Therefore, this review focuses on the corrosive characterizations of the Sn-Zn alloy system.

Details

Soldering & Surface Mount Technology, vol. 31 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 September 1963

CORROSION FATIGUE Study of basic mechanism. An extensive study to determine the basic mechanism of corrosion fatigue has been conducted in Russia by the Central Scientific…

Abstract

CORROSION FATIGUE Study of basic mechanism. An extensive study to determine the basic mechanism of corrosion fatigue has been conducted in Russia by the Central Scientific Research Institute of the Ministry of Railways, U.S.S.R. Measurements of local electrical potentials showed that stresses do not lower the potential at the points of stress concentration. A potential drop in the most stressed portion of specimens was observed only after prolonged stressing.

Details

Anti-Corrosion Methods and Materials, vol. 10 no. 9
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 1 September 1961

B.O. Skipp

The economic significance of corrosion is now being increasingly appreciated throughout a wide range of industry. In some industries corrosion must be controlled if the industry…

Abstract

The economic significance of corrosion is now being increasingly appreciated throughout a wide range of industry. In some industries corrosion must be controlled if the industry is to function. This is so particularly of the chemical process industries, but is not wholly true of civil engineering. Exposed steel structures such as bridges must be protected, but generally the possibility of structural weakness arising from corrosion has been allowed for in design by generous safety factors. This attitude has generally prevailed in that part of civil engineering known as foundation engineering.

Details

Anti-Corrosion Methods and Materials, vol. 8 no. 9
Type: Research Article
ISSN: 0003-5599

1 – 10 of over 1000