Search results

1 – 10 of 60
Article
Publication date: 15 January 2020

Virendra Kumar, Amit Kumar and Brajkishor Prasad

This paper aims to present an experimental investigation on the performances of alkali-activated slag (AAS) concrete and Portland slag cement (PSC) concrete under the influence of…

Abstract

Purpose

This paper aims to present an experimental investigation on the performances of alkali-activated slag (AAS) concrete and Portland slag cement (PSC) concrete under the influence of elevated temperature. In the present study, the alkali-activated binder contains 85% of ground granulated blast furnace slag (GGBFS) and 15% of powder blended as chemical activators.

Design/methodology/approach

For the purpose, standard size of cube, cylinder and prism have been cast for a designed mix of concrete. The AAS concrete specimens were kept for water as well as air curing. After attaining the maturity of 28 days, the samples were first exposed to different elevated temperatures, i.e. 100°C, 200°C, 300°C, 400°C, 500°C, 600°C, 700°C and 800°C. Later on, the tests were conducted on these samples to find the change in weight and the residual strength of the concrete.

Findings

After 500°C exposure, a considerable amount of the strength loss has been observed for AAS concrete. It has been evaluated that the performance of AAS concrete is better than that of the PSC concrete at elevated temperature.

Research limitations/implications

The present research work is being applied on the material for which the experimental result has been obtained.

Practical implications

The author has tried to develop a new type of binder by using steel industry waste material and then tested at elevated temperature to sustain at high temperatures.

Social implications

This research may give a social impact for developing mass housing project with a lower cost than that of using a conventional binder, i.e. cement.

Originality/value

A new type of binder material is being developed.

Details

Journal of Structural Fire Engineering, vol. 11 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 14 February 2022

Virendra Kumar and Rajesh Kumar Paswan

This paper attempted to study the alkali-activated (AA) binder consisting of 94% of ground granulated blast furnace slag (GGBFS) and 6% of blended powder of alkali metal hydroxide…

Abstract

Purpose

This paper attempted to study the alkali-activated (AA) binder consisting of 94% of ground granulated blast furnace slag (GGBFS) and 6% of blended powder of alkali metal hydroxide and metal sulfate, which acted as an activator.

Design/methodology/approach

Several concrete specimens (cubes, cylinders and prisms), which were casted using AA binders, were further tested for mechanical properties after exposure to elevated temperatures of 200 °C, 400 °C, 600 °C and 800 °C. Additionally, to understand the structural behavior in uniaxial compressive load, reinforced concrete short columns were cast, cured and tested at ambient temperature as well as after exposure to 300 °C, 600 °C and 900 °C, to know the residual strength after exposure to elevated temperature.

Findings

The findings for the residual strength of alkali-activated slag binder concrete (AASBC) indicated a substantial agreement with the results obtained for the residual strength of Portland slag cement (PSC) concrete, thereby showing the effectiveness of binder when used as a replacement of cement.

Originality/value

The study clearly indicates that the binder developed is an effective approach for the 100% replacement of cement in the concrete.

Details

Journal of Structural Fire Engineering, vol. 14 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 13 November 2017

Ali Mohamed Ali Aboshia, Riza Atiq Rahmat, Muhammad Fauzi Mohd Zain and Amiruddin Ismail

The purpose of this paper is to develop an alternative new ternary geopolymer mortar (MKSP) to resolve a traditional mortar problem which exhibits several disadvantages, including…

Abstract

Purpose

The purpose of this paper is to develop an alternative new ternary geopolymer mortar (MKSP) to resolve a traditional mortar problem which exhibits several disadvantages, including poor strengths and surface microcracks and the CO2 air pollution.

Design/methodology/approach

The MKSP ternary binder was produced using metakaolin (MK), slag (S), and palm oil fuel ash (POFA) activated with an alkaline mixture of sodium silicate (Na2SiO3) and 10 M NaOH in a mass ratio of 2.5. Seven different mix proportions of MK, slag, and POFA were used to fabricate MKSP mortars. The water-to-binder ratio was varied between 0.4 and 0.5. The mortars were heat cured for 2 h at 80°C and then aged in air. Flexural stress and strain, mortars flow and compressive strength were tested. Furthermore, the mortars were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) analyses.

Findings

The results showed that the sample MKSP6, which contained 40 percent MK, 40 percent slag, and 20 percent POFA, exhibited high compressive strength (52 MPa) without any cracks and flexural strength (6.9 MPa) at 28 days after being cured for 2 h at 80°C; however, the MKSP7 mortar with optimal strength of 55 MPa showed some surface cracks . Further, the results of the XRD, SEM, and FTIR analyses indicated that the MKSP mortars primarily consisted of a crystalline (Si+Al) phase (70 percent) and a smaller amorphous (Si+Ca) phase (30 percent).

Research limitations/implications

The MKSP ternary geopolymer mix has three limitations as an importance of heat curing for development early strength, POFA content less than 20 percent to gain high normal strength and delaying the sitting time by controlling the slag content or the alkali activator type.

Practical implications

The use of geopolymer materials binder in a real building is limited and it still under research, Thus, the first model of real applied geopolymer cement in 2008 was the E-Crete model that formed by Zeobond company Australia to take the technology of geopolymer concrete to reality. Zeobond Pty Ltd was founded by Professor Jannie S.J. van (van Deventer et al., 2013), it was used to product precast concrete for the building structure. The second model was PYRAMENT model in 2002 by American cement manufacturer Lone Star Industries which was produced from the development carried out on inorganic alumino-silicate polymers called geopolymer (Palomo et al., 1999). In 2013 the third model was Queensland’s University GCI building with three suspended floors made from structural geopolymer concrete containing slag/fly ash-based geopolymer (Pathak, 2016). In Australia, 2014, the newly completed Brisbane West Wellcamp airport becomes the greenest airport in the world. Cement-free geopolymer concrete was used to save more than 6,600 tons of carbon emissions in the construction of the airport. Therefore, the next century will see cement companies developing alternative binders that are more environmentally friendly from a sustainable development point of view.

Originality/value

Production of new geopolymer binder of mortar as alternative to traditional cement binder with high early and normal strength from low cost waste materials, less potential of cracking, less energy consumption need and low carbon dioxide emission.

Details

International Journal of Building Pathology and Adaptation, vol. 35 no. 5
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 26 February 2019

Debabrata Dutta and Somnath Ghosh

This paper aims to investigate the effect of delayed water curing on the mechanical and microstructural properties of fly ash-based geopolymer paste-blended with Ground Granulated…

Abstract

Purpose

This paper aims to investigate the effect of delayed water curing on the mechanical and microstructural properties of fly ash-based geopolymer paste-blended with Ground Granulated Blast Furnace Slag (GGBS) with different rest periods.

Design/methodology/approach

The blended geopolymer paste was composed of GGBS (15 per cent of the total weight) and the base material, Fly Ash (FA). The blended mix was activated by activator solution (Sodium hydroxide and Sodium silicate) containing 6 per cent Na2O of total base material. The effect of delayed water curing has been studied by gradually increasing the aging period (Rest Period) from 2 hours to 24 hours in the formation of activated outcome along with Calcium Silicate Hydrate (CSH). To analyze the mechanical and microstructural properties of the resultant blended geopolymer paste, compressive strength test, FESEM and XRD have been carried out. Moreover, a long-term durability test subjected to sulphate exposure has been performed to evaluate the durability of the designed sustainable geopolymer paste.

Findings

The present paper shows that the delayed water curing incorporates secondary heat input enhancing the partial polymer formation along with CSH. Slag-blended AAFA-based geopolymer paste is seen to exhibit quick setting property. Also, AAFA-based geopolymer paste samples subjected to longer rest period show early strength gain at a high rate under water curing as compared to those subjected to the shorter rest period.

Originality/value

To the best of authors’ knowledge, the effect of delayed water curing on the mechanical and microstructural properties of slag-blended AAFA-based geopolymer paste has not been studied before.

Details

World Journal of Engineering, vol. 16 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 December 2023

Bheem Pratap and Pramod Kumar

To investigate the mechanical properties of geopolymer concrete at elevated temperatures.

Abstract

Purpose

To investigate the mechanical properties of geopolymer concrete at elevated temperatures.

Design/methodology/approach

The investigation involved studying the influence of partially replacing fly ash with ground granulated blast furnace slag (GGBS) at different proportions (5%, 10%, 15%, 20% and 25%) on the composition of the geopolymer. This approach aimed to examine how the addition of GGBS impacts the properties of the geopolymer material. The chemical NaOH was purchased from the local supplier of Jamshedpur. The alkali solution was prepared with a concentration of 12 M NaOH to produce the concrete. After several trials, the alkaline-to-binder ratio was determined to be 0.43.

Findings

The compressive strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 35.42 MPa, 41.26 MPa, 44.79 MPa, 50.51 MPa and 46.33 MPa, respectively. The flexural strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 5.31 MPa, 5.64 MPa, 6.12 MPa, 7.15 MPa and 6.48 MPa, respectively. The split tensile strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 2.82 MPa, 2.95 MPa, 3.14 MPa, 3.52 MPa and 3.31 MPa, respectively.

Originality/value

This approach allows for the examination of how the addition of GGBS affects the properties of the geopolymer material. Four different temperature levels were chosen for analysis: 100 °C, 300 °C, 500 °C and 700 °C. By subjecting the geopolymer samples to these elevated temperatures, the study aimed to observe any changes in their mechanical.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 12 April 2024

Shivendra Singh Rathore and Chakradhara Rao Meesala

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on…

Abstract

Purpose

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on properties of low calcium fly ash (FA)-based geopolymer concrete (GPC) cured at oven temperature. Further, this paper aims to study the effect of partial replacement of FA by ground granulated blast slag (GGBS) in GPC made with both NCA and RCA cured under ambient temperature curing.

Design/methodology/approach

M25 grade of ordinary Portland cement (OPC) concrete was designed according to IS: 10262-2019 with 100% NCA as control concrete. Since no standard guidelines are available in the literature for GPC, the same mix proportion was adopted for the GPC by replacing the OPC with 100% FA and W/C ratio by alkalinity/binder ratio. All FA-based GPC mixes were prepared with 12 M of sodium hydroxide (NaOH) and an alkalinity ratio, i.e. sodium hydroxide to sodium silicate (NaOH:Na2SiO3) of 1:1.5, subjected to 90°C temperature for 48 h of curing. The NCA were replaced with 50% and 100% RCA in both OPC and GPC mixes. Further, FA was partially replaced with 15% GGBS in GPC made with the above percentages of NCA and RCA, and they were given ambient temperature curing with the same molarity of NaOH and alkalinity ratio.

Findings

The workability, compressive strength, split tensile strength, flexural strength, water absorption, density, volume of voids and rebound hammer value of all the mixes were studied. Further, the relationship between compressive strength and other mechanical properties of GPC mixes were established and compared with the well-established relationships available for conventional concrete. From the experimental results, it is found that the compressive strength of GPC under ambient curing condition at 28 days with 100% NCA, 50% RCA and 100% RCA were, respectively, 14.8%, 12.85% and 17.76% higher than those of OPC concrete. Further, it is found that 85% FA and 15% GGBS-based GPC with RCA under ambient curing shown superior performance than OPC concrete and FA-based GPC cured under oven curing.

Research limitations/implications

The scope of the present paper is limited to replace the FA by 15% GGBS. Further, only 50% and 100% RCA are used in place of natural aggregate. However, in future study, the replacement of FA by different amounts of GGBS (20%, 25%, 30% and 35%) may be tried to decide the optimum utilisation of GGBS so that the applications of GPC can be widely used in cast in situ applications, i.e. under ambient curing condition. Further, in the present study, the natural aggregate is replaced with only 50% and 100% RCA in GPC. However, further investigations may be carried out by considering different percentages between 50 and 100 with the optimum compositions of FA and GGBS to enhance the use of RCA in GPC applications. The present study is further limited to only the mechanical properties and a few other properties of GPC. For wider use of GPC under ambient curing conditions, the structural performance of GPC needs to be understood. Therefore, the structural performance of GPC subjected to different loadings under ambient curing with RCA to be investigated in future study.

Originality/value

The replacement percentage of natural aggregate by RCA may be further enhanced to 50% in GPC under ambient curing condition without compromising on the mechanical properties of concrete. This may be a good alternative for OPC and natural aggregate to reduce pollution and leads sustainability in the construction.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 July 2021

Suresh Kumar Arunachalam, Muthukannan Muthiah, Kanniga Devi Rangaswamy, Arunkumar Kadarkarai and Chithambar Ganesh Arunasankar

Demand for Geopolymer concrete (GPC) has increased recently because of its many benefits, including being environmentally sustainable, extremely tolerant to high temperature and…

Abstract

Purpose

Demand for Geopolymer concrete (GPC) has increased recently because of its many benefits, including being environmentally sustainable, extremely tolerant to high temperature and chemical attacks in more dangerous environments. Like standard concrete, GPC also has low tensile strength and deformation capacity. This paper aims to analyse the utilization of incinerated bio-medical waste ash (IBWA) combined with ground granulated blast furnace slag (GGBS) in reinforced GPC beams and columns. Medical waste was produced in the health-care industry, specifically in hospitals and diagnostic laboratories. GGBS is a form of industrial waste generated by steel factories. The best option to address global warming is to reduce the consumption of Portland cement production and promote other types of cement that were not a pollutant to the environment. Therefore, the replacement in ordinary Portland cement construction with GPC is a promising way of reducing carbon dioxide emissions. GPC was produced due to an alkali-activated polymeric reaction between alumina-silicate source materials and unreacted aggregates and other materials. Industrial pollutants such as fly ash and slag were used as raw materials.

Design/methodology/approach

Laboratory experiments were performed on three different proportions (reinforced cement concrete [RCC], 100% GGBS as an aluminosilicate source material in reinforced geopolymer concrete [GRGPC] and 30% replacement of IBWA as an aluminosilicate source material for GGBS in reinforced geopolymer concrete [IGRGPC]). The cubes and cylinders for these proportions were tested to find their compressive strength and split tensile strength. In addition, beams (deflection factor, ductility factor, flexural strength, degradation of stiffness and toughness index) and columns (load-carrying ability, stress-strain behaviour and load-deflection behaviours) of reinforced geopolymer concrete (RGPC) were studied.

Findings

As shown by the results, compared to Reinforced Cement Concrete (RCC) and 100% GGBS based Reinforced Geopolymer Concrete (GRGPC), 30% IBWA and 70% GGBS based Reinforced Geopolymer Concrete (IGRGPC) (30% IBWA–70% GGBS reinforced geo-polymer concrete) cubes, cylinders, beams and columns exhibit high compressive strength, tensile strength, flexural strength, load-carrying ability, ultimate strength, stiffness, ductility and deformation capacity.

Originality/value

All the results were based on the experiments done in this research. All the result values obtained in this research are higher than the theoretical values.

Details

World Journal of Engineering, vol. 19 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 February 1988

Joseph Davidovits

Introduction How old is concrete? 150 years, 2,000 years or 9,000 years? Since the invention of Portland cement by Aspdin in the early 19th century, concrete has become the most…

Abstract

Introduction How old is concrete? 150 years, 2,000 years or 9,000 years? Since the invention of Portland cement by Aspdin in the early 19th century, concrete has become the most widely used construction material in the world. Yet, concrete durability can pose severe constraints on the concrete engineer and designer. In the search for materials which are more cost‐effective or more efficient, cement replacement materials such as natural pozzolans, calcined clays, shale and soils, slags, rice husk ash or pulverised fuel ash are attracting much interest. Are these cheap replacement materials not compromising on quality and long‐term durability? A first optimistic answer is given in this paper which will be especially useful for practising civil and structural engineers, materials technologists, engineers and designers.

Details

Structural Survey, vol. 6 no. 2
Type: Research Article
ISSN: 0263-080X

Article
Publication date: 9 May 2018

Andrea Nana Ofori-Boadu, Richard Yeboah Abrokwah, Spero Gbewonyo and Elham Fini

The purpose of this paper is to investigate the effect of an admixture, Swine-waste Bio-char (SB), on the water absorption characteristics of cement pastes.

Abstract

Purpose

The purpose of this paper is to investigate the effect of an admixture, Swine-waste Bio-char (SB), on the water absorption characteristics of cement pastes.

Design/methodology/approach

The effect of SB percentages, heat treatment temperatures, water/binder ratios, and age on the water absorption percentages (WAPs) of SB modified cement pastes were investigated using scanning electron microscopy-energy dispersive spectra, FTIR, Brunauer-Emmett-Teller, and laboratory experiments.

Findings

The WAPs of cement pastes with SBs produced at the low treatment temperature (LTT) of 340°C and 400°C were significantly lower (p<0.01) than pastes with SBs produced at the high treatment temperature (HTT) of 600°C and 800°C. This was attributed primarily to the more dominant presence of hydrophobic alkyl surface groups from non-volatilized matter in LTT-SBs. This had also resulted in lower surface areas and pore volumes in LTT-SBs. As a result of the volatilization of these labile hydrophobic groups at HTT, HTT-SBs were more hydrophilic and had higher surface areas and pore volumes. Consequently, HTT-SB pastes had higher WAPs and no significant differences (p<0.05) existed between HTT-SB pastes and control pastes. Also, low water/binder ratios and aging reduced water absorption of SB modified cement pastes.

Practical implications

LTT-SBs reduce water absorption and could reduce concrete deterioration; and as such, associated building repair, maintenance, and adaptation costs. Notably, reductions in concrete water absorption will extend the service life of concrete buildings and infrastructures, particularly in unfavorable environmental conditions. The observed benefits are tempered by the current lack of information on the effects of SB on compression strength, workability, and other durability properties.

Social implications

SB utilization in concrete buildings will enhance swine-waste disposal and reduce negative environmental impacts on swine farming communities; consequently, improving their quality of life.

Originality/value

Current bio-char research is focused on plant-derived bio-char toward soil remediation and contaminant removal, with very limited applications in concrete. This research advances knowledge for developing livestock-derived bio-char, as a PCRM, toward more sustainable and durable concrete structures.

Details

International Journal of Building Pathology and Adaptation, vol. 36 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 11 July 2019

Gopalakrishnan Rajagopalan

The durability of concrete structures, especially built-in corrosive environments, starts to deteriorate after 20–30 years, even though they have been designed for more than 60…

Abstract

Purpose

The durability of concrete structures, especially built-in corrosive environments, starts to deteriorate after 20–30 years, even though they have been designed for more than 60 years of service life. The durability of concrete depends on its resistance against a corrosive environment. Inorganic Polymer concrete, or geopolymer concrete, has been emerging as a new engineering material with the potential to form an alternative to conventional concrete for the construction industry. The purpose of this paper is to conduct the investigation on corrosion of the geopolymer materials prepared using GGBS blended with low calcium fly ash in different percentages and sodium hydroxide, sodium silicate as activators and cured in ambient conditions (25±5°C).

Design/methodology/approach

GGBS was replaced by fly ash at different levels from 0 to 50 percent in a constant concentration of 12M. The main parameters of this study are the evaluation of strength characteristics of geopolymer concrete and resistance against corrosion by conducting accelerated corrosion test (Florida method).

Findings

From the test results it is observed that the strength of the geopolymer concrete with GGBS in ambient curing performs well compared to geopolymer concrete with GGBS blended with fly ash. The GPCE sample (40 percent replacement of fly ash to GGBS) shows better results and the resistance against corrosion was good, compared to all other mixes.

Research limitations/implications

The outcomes of this investigation will be useful for the researchers and the construction industry.

Practical implications

This paper results that optimum percentage of fly ash should be blended with GGBS against the corrosion attack. This investigation indicates that GGBS without the combination of fly ash can be utilized in a normal environment. These findings will definitely be useful for the ready-mix concrete manufacturers and the construction Industry.

Social implications

Disposal of industrial wastes causes pollution to the environment. Industrial wastes are utilized for the production of geopolymer concrete, which is the alternative material for the construction industry.

Originality/value

From the observation of the previous literature, till now there was no investigation on geopolymer concrete for corrosion under ambient curing conditions, as such this investigation could be considered as the new investigation.

Details

Engineering, Construction and Architectural Management, vol. 26 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 60