Search results

1 – 10 of 89
Article
Publication date: 22 January 2024

Peng Yin, Tao Liu, Baofeng Pan and Ningbo Liu

The coal-based synthetic natural gas slag (CSNGS) is a solid waste remaining from the incomplete combustion of raw coal to produce gas. With the continuous promotion of efficient…

Abstract

Purpose

The coal-based synthetic natural gas slag (CSNGS) is a solid waste remaining from the incomplete combustion of raw coal to produce gas. With the continuous promotion of efficient and clean utilization of coal in recent years, the stockpiling of CSNGS would increase gradually, and it would have significant social and environmental benefits with reasonable utilization of CSNGS. This study prepared a new geopolymer by mixing CSNGS with PC42.5 cement in a certain mass ratio as the precursor, with sodium hydroxide and sodium silicate solution as the alkali activators.

Design/methodology/approach

The formulation of coal-based synthetic natural gas slag geopolymer (CSNGSG) was determined by an orthogonal test, and then the strength mechanism and microstructure of CSNGSG were characterized by multi-scale tests.

Findings

The results show that the optimum ratio of CSNGSG was a sodium silicate modulus of 1.3, an alkali dosage of 21% and a water cement ratio of 0.36 and the maximum unconfined compressive strength of CSNGSG at 7 d was 26.88 MPa. The increase of curing temperature could significantly improve the compressive strength of CSNGSG, and the curing humidity had little effect on the compressive strength of CSNGSG. The development of the internal strength of CSNSG at high temperatures consumed SiO2, Al2O3 and CaO and the intensity of corresponding crystalline peaks decreased.

Originality/value

Moreover, the vibration of chemical bonds in different wavenumbers also revealed the reaction mechanism of CSNSG from another perspective. Finally, the relevant test results indicated that CSNGS had practical application value as a raw material for the preparation of geopolymer cementing materials.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 March 2023

Bahareh Nikmehr, Bidur Kafle and Riyadh Al-Ameri

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in…

Abstract

Purpose

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in concrete. It is vital as the old paste attached to the RCA weakens its structure. It is due to the porous structure of the RCA with cracks, weakening the interfacial transition zone (ITZ) between the RCA and binding material, negatively impacting the concrete's properties. To this end, various methods for reinforcement of the RCA, cleaning the RCA's old paste and enhancing the quality of the RCA-based concrete without RCA modification are studied in terms of environmental effects, cost and technical matters. Furthermore, this research sought to identify gaps in knowledge and future research directions.

Design/methodology/approach

The review of the relevant journal papers revealed that various methods exist for improving the properties of RCAs and RCA-based concrete. A decision matrix was developed and implemented for ranking these techniques based on environmental, economic and technical criteria.

Findings

The identified methods for reinforcement of the RCA include accelerated carbonation, bio deposition, soaking in polymer emulsions, soaking in waterproofing admixture, soaking in sodium silicate, soaking in nanoparticles and coating with geopolymer slurry. Moreover, cleaning the RCA's old paste is possible using acid, water, heating, thermal and mechanical treatment, thermo-mechanical and electro-dynamic treatment. Added to these treatment techniques, using RCA in saturated surface dry (SSD) mixing approaches and adding fibres or pozzolana enhance the quality of the RCA-based concrete without RCA modification. The study ranked these techniques based on environmental, economic and technical criteria. Ultimately, adding fibres, pozzolana and coating RCA with geopolymer slurry were introduced as the best techniques based on the nominated criteria.

Practical implications

The study supported the need for better knowledge regarding the existing treatment techniques for RCA improvement. The outcomes of this research offer an understanding of each RCA enrichment technique's importance in environmental, economic and technical criteria.

Originality/value

The practicality of the RCA treatment techniques is based on economic, environmental and technical specifications for rating the existing treatment techniques.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 26 February 2019

Debabrata Dutta and Somnath Ghosh

This paper aims to investigate the effect of delayed water curing on the mechanical and microstructural properties of fly ash-based geopolymer paste-blended with Ground Granulated…

Abstract

Purpose

This paper aims to investigate the effect of delayed water curing on the mechanical and microstructural properties of fly ash-based geopolymer paste-blended with Ground Granulated Blast Furnace Slag (GGBS) with different rest periods.

Design/methodology/approach

The blended geopolymer paste was composed of GGBS (15 per cent of the total weight) and the base material, Fly Ash (FA). The blended mix was activated by activator solution (Sodium hydroxide and Sodium silicate) containing 6 per cent Na2O of total base material. The effect of delayed water curing has been studied by gradually increasing the aging period (Rest Period) from 2 hours to 24 hours in the formation of activated outcome along with Calcium Silicate Hydrate (CSH). To analyze the mechanical and microstructural properties of the resultant blended geopolymer paste, compressive strength test, FESEM and XRD have been carried out. Moreover, a long-term durability test subjected to sulphate exposure has been performed to evaluate the durability of the designed sustainable geopolymer paste.

Findings

The present paper shows that the delayed water curing incorporates secondary heat input enhancing the partial polymer formation along with CSH. Slag-blended AAFA-based geopolymer paste is seen to exhibit quick setting property. Also, AAFA-based geopolymer paste samples subjected to longer rest period show early strength gain at a high rate under water curing as compared to those subjected to the shorter rest period.

Originality/value

To the best of authors’ knowledge, the effect of delayed water curing on the mechanical and microstructural properties of slag-blended AAFA-based geopolymer paste has not been studied before.

Details

World Journal of Engineering, vol. 16 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 November 2017

Ali Mohamed Ali Aboshia, Riza Atiq Rahmat, Muhammad Fauzi Mohd Zain and Amiruddin Ismail

The purpose of this paper is to develop an alternative new ternary geopolymer mortar (MKSP) to resolve a traditional mortar problem which exhibits several disadvantages, including…

Abstract

Purpose

The purpose of this paper is to develop an alternative new ternary geopolymer mortar (MKSP) to resolve a traditional mortar problem which exhibits several disadvantages, including poor strengths and surface microcracks and the CO2 air pollution.

Design/methodology/approach

The MKSP ternary binder was produced using metakaolin (MK), slag (S), and palm oil fuel ash (POFA) activated with an alkaline mixture of sodium silicate (Na2SiO3) and 10 M NaOH in a mass ratio of 2.5. Seven different mix proportions of MK, slag, and POFA were used to fabricate MKSP mortars. The water-to-binder ratio was varied between 0.4 and 0.5. The mortars were heat cured for 2 h at 80°C and then aged in air. Flexural stress and strain, mortars flow and compressive strength were tested. Furthermore, the mortars were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) analyses.

Findings

The results showed that the sample MKSP6, which contained 40 percent MK, 40 percent slag, and 20 percent POFA, exhibited high compressive strength (52 MPa) without any cracks and flexural strength (6.9 MPa) at 28 days after being cured for 2 h at 80°C; however, the MKSP7 mortar with optimal strength of 55 MPa showed some surface cracks . Further, the results of the XRD, SEM, and FTIR analyses indicated that the MKSP mortars primarily consisted of a crystalline (Si+Al) phase (70 percent) and a smaller amorphous (Si+Ca) phase (30 percent).

Research limitations/implications

The MKSP ternary geopolymer mix has three limitations as an importance of heat curing for development early strength, POFA content less than 20 percent to gain high normal strength and delaying the sitting time by controlling the slag content or the alkali activator type.

Practical implications

The use of geopolymer materials binder in a real building is limited and it still under research, Thus, the first model of real applied geopolymer cement in 2008 was the E-Crete model that formed by Zeobond company Australia to take the technology of geopolymer concrete to reality. Zeobond Pty Ltd was founded by Professor Jannie S.J. van (van Deventer et al., 2013), it was used to product precast concrete for the building structure. The second model was PYRAMENT model in 2002 by American cement manufacturer Lone Star Industries which was produced from the development carried out on inorganic alumino-silicate polymers called geopolymer (Palomo et al., 1999). In 2013 the third model was Queensland’s University GCI building with three suspended floors made from structural geopolymer concrete containing slag/fly ash-based geopolymer (Pathak, 2016). In Australia, 2014, the newly completed Brisbane West Wellcamp airport becomes the greenest airport in the world. Cement-free geopolymer concrete was used to save more than 6,600 tons of carbon emissions in the construction of the airport. Therefore, the next century will see cement companies developing alternative binders that are more environmentally friendly from a sustainable development point of view.

Originality/value

Production of new geopolymer binder of mortar as alternative to traditional cement binder with high early and normal strength from low cost waste materials, less potential of cracking, less energy consumption need and low carbon dioxide emission.

Details

International Journal of Building Pathology and Adaptation, vol. 35 no. 5
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 7 October 2021

Dibyendu Adak, Donkupar Francis Marbaniang and Subhrajit Dutta

Self-healing concrete is a revolutionary building material that will generally reduce the maintenance cost of concrete constructions. Self-healing of cracks in concrete structure…

Abstract

Purpose

Self-healing concrete is a revolutionary building material that will generally reduce the maintenance cost of concrete constructions. Self-healing of cracks in concrete structure would contribute to a longer service life of the concrete and would make the material more durable and more sustainable. The cementitious mortar with/without incorporating encapsulates at different percentages of slag replacement with the cement mix improves autogenous healing at different ages. Therefore, this study’s aim is to develop a self-healing cementitious matrix for repair and retrofitting of concrete structures.

Design/methodology/approach

In the present work, waste straw pipes are used as a capsule, filled with the solution of sodium hydroxide (NaOH), sodium silicate (Na2SiO3) and colloidal nano-silica as self-healing activators. An artificial micro-crack on the control and blended mortar specimens at different percentages of slag replacement with cement (with/without encapsulation) is developed by applying a compressive load of 50% of its ultimate load-carrying capacity. The mechanical strength and ultrasonic pulse velocity, water absorption and chloride ion penetration test are conducted on the concrete specimen before and after the healing period. Finally, the self-healing activity of mortar mixes with/without encapsulation is analysed at different ages.

Findings

The encapsulated mortar mix with 10% of slag content has better self-healing potential than all other mixes considering mechanical strength and durability. The enhancement of the self-healing potential of such mortar mix is mainly due to hydration of anhydrous slag on the crack surface and transformation of amorphous slag to the crystalline phase in presence of encapsulated fluid.

Research limitations/implications

The self-healing activities of the slag-based cementitious composite are studied for a healing period of 90 days only. The strength and durability performance of the cracked specimen may be increased after a long healing period.

Practical implications

The outcome of the work will help repair the cracks in the concrete structure and enhances the service life.

Originality/value

This study identifies the addition encapsulates with a self-healing activator fluid that can recover its strength after minor damage.

Details

International Journal of Structural Integrity, vol. 12 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 December 2021

Santosh Kumar Karri, Markandeya Raju Ponnada and Lakshmi Veerni

One of the sources for the increase in the carbon footprint on the earth is the manufacturing of cement, which causes a severer environmental impact. Abundant research is going on…

Abstract

Purpose

One of the sources for the increase in the carbon footprint on the earth is the manufacturing of cement, which causes a severer environmental impact. Abundant research is going on to diminish CO2 content in the atmosphere by appropriate utilization of waste by-products of industries. Alkali-activated slag concrete (AASC) is an innovative green new concrete made by complete replacement of cement various supplementary cementitious raw materials. Concrete is a versatile material used in different fields of structures, so it is very important to study the durability in different exposures along with the strength. The purpose of this paper is to study the performance of AASC by incorporating quartz sand as fine aggregate under different exposure conditions.

Design/methodology/approach

The materials for this innovative AASC are selected based on preliminary studies and literature surveys. Based on numerous trials a better performance mix proportion of AASC with quartz sand is developed with 1:2:4 mix proportion, 0.8 alkali Binder ratio, 19 M of NaOH and 50% concentration of Na2SiO3. Subsequently, AASC cubes are prepared and exposed for 3, 7, 14, 28, 56, 90, 112, 180, 252 and 365 days in ambient, acid, alkaline, sulfate, chloride and seawater and tested for compressive strength. In addition, to study the microstructural characteristics, scanning electron microscope (SEM), energy dispersive X-ray analysis and X-ray diffraction analysis was also performed.

Findings

Long-term performance of AASC developed with quartz sand is very good in the ambient, alkaline environment of 5% NaOH and seawater with the highest compressive strength values of 51.8, 50.83 and 64.46, respectively. A decrease in compressive strengths was observed after the age of 14, 56 and 112 days for acid, chloride and sulfate exposure conditions, respectively. SEM image shows a denser microstructure of AASC matrix for ambient, alkaline of 5% NaOH and seawater.

Research limitations/implications

The proposed AASC is prepared with a mix proportion of 1:2:4, so the other proportions of AASC need to verify. In general plain, AASC is not used in practice except in few applications, in this work the effect of reinforced AASC is not checked. The real environmental exposure in fields may not create for AASC, as it was tested in different exposure conditions in the laboratory.

Practical implications

The developed AASC is recommended in practical applications where early strength is required, where the climate is hot, where water is scarce for curing, offshore and onshore constructions exposed to the marine environment and alkaline environment industries like breweries, distilleries and sewage treatment plants. As AASC is recommended for ambient air and in other exposures, its implementation as a construction material will reduce the carbon footprint.

Originality/value

The developed AASC mix proportion 1:2:4 is an economical mix, because of low binder content, but it exhibits a higher early age compressive strength value of 45.6 MPa at the age of 3 days. The compressive strength increases linearly with age from 3 to 365 days when exposed to seawater and ambient air. The performance of AASC is very good in the ambient, alkaline environment and seawater compared to other exposure conditions.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 4 December 2023

Bahareh Nikmehr, Bidur Kafle and Riyadh Al-Ameri

Concrete, the second most used material in the world, surpassed only by water, relies on a vast amount of cement. The process of cement production emits substantial amounts of…

Abstract

Purpose

Concrete, the second most used material in the world, surpassed only by water, relies on a vast amount of cement. The process of cement production emits substantial amounts of carbon dioxide (CO2). Consequently, it is crucial to search for cement alternatives. Geopolymer concrete (GC) uses industrial by-product material instead of traditional cement, which not only reduces CO2 emissions but also enhances concrete durability. On the other hand, the disposal of concrete waste in the landfills represents a significant environmental challenge, emphasising the urgent need for sustainable solutions. This study aimed to investigate waste concrete's best form and rate as the alternative aggregates in self-compacting and ambient-cured GC to preserve natural resources, reduce construction and demolition waste and decrease pertinent CO2 emissions. The binding material employed in this research encompasses fly ash, slag, micro fly ash and anhydrous sodium metasilicate as an alkali activator. It also introduces the best treatment method to improve the recycled concrete aggregate (RCA) quality.

Design/methodology/approach

A total of25%, 50% and 100% of coarse aggregates are replaced with RCAs to cast self-compacting geopolymer concrete (SCGC) and assess the impact of RCA on the fresh, hardened and water absorption properties of the ambient-cured GC. Geopolymer slurry was used for coating RCAs and the authors examined the effect of one-day and seven-day cured coated RCA. The mechanical properties (compressive strength, splitting tensile strength and modulus of elasticity), rheological properties (slump flow, T500 and J-ring) and total water absorption of RCA-based SCGC were studied. The microstructural and chemical compositions of the concrete mixes were studied by the methods of energy dispersive X-Ray and scanning electron microscopy.

Findings

It is evident from the test observations that 100% replacement of natural aggregate with coated RCA using geopolymer slurry containing fly ash, slag, micro fly ash and anhydrous sodium metasilicate cured for one day before mixing enhances the concrete's quality and complies with the flowability requirements. Assessment is based on the fresh and hardened properties of the SCGC with various RCA contents and coating periods. The fresh properties of the mix with a seven-day curing time for coated RCA did not meet the requirements for self-compacting concrete, while this mix demonstrated better compressive strength (31.61 MPa) and modulus of elasticity (15.39 GPa) compared to 29.36 MPa and 9.8 GPa, respectively, for the mix with one-day cured coated RCA. However, incorporating one-day-cured coated RCA in SCGC demonstrated better splitting tensile strength (2.32 MPa) and water absorption (15.16%).

Research limitations/implications

A potential limitation of this study on SCGC with coated RCAs is the focus on the short-term behaviour of this concrete. This limited time frame may not meet the long-term requirements for ensuring the sustained durability of the structures throughout their service life.

Originality/value

This paper highlights the treatment technique of coating RCA with geopolymer slurry for casting SCGC.

Details

Smart and Sustainable Built Environment, vol. 13 no. 2
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 17 March 2022

Balamurali Kanagaraj, Tattukolla Kiran, Anand N., Khalifa Al Jabri and Justin S.

This study aims to develop geopolymer concrete (GPC) using manufactured sand (M-sand) and recycled concrete aggregate (RCA) under different curing conditions. GPC is a sustainable…

Abstract

Purpose

This study aims to develop geopolymer concrete (GPC) using manufactured sand (M-sand) and recycled concrete aggregate (RCA) under different curing conditions. GPC is a sustainable construction material developed with industrial waste products such as fly ash to eliminate the use of cement in the production of concrete. GPC requires heat curing for the attainment of early age strength. The development of GPC under heat curing conditions is a hard process in practice. To overcome such circumstances, an attempt was made to develop the GPC under different curing conditions with the aid of coarse aggregate (CA) and RCA. The influence of different curing conditions on strength gain and microstructural characteristics of GPC is investigated. Mechanical properties of GPC such as compressive strength, tensile strength, flexural strength and elastic modulus are reported and discussed.

Design/methodology/approach

This study focuses on the assessment of mechanical and microstructure characterization of eco-efficient GPC developed with natural CA and RCAs. The required optimum quantity of binder, alkali activator, alkaline liquid to binder ratio and aggregates was determined by appropriate trials. Three types of curing methods, namely, ambient, oven and water, were used for the development of GPC mixes. Following the properties of RCA, it is realistic to substitute up to 40% of coarser aggregates as the resulting aggregate mix falls within the requirements of the analyzed mix.

Findings

Special attention is required for the mix with RCA because the mix’s consistency is affected by the high water absorption of the RCA mix. GPC specimens cured at ambient and water conditions exhibited marginal variation in the compressive strength for both CA and RCA. The compressive strength of GPC mixes prepared with RCA was marginally higher than that of the GPC made with CA under different curing regimes. RCA can be used as a sustainable material in lieu of CA in GPC.

Originality/value

The main significance of this research work is to develop the optimal mix design with appropriate mix proportion. The present study proposes a satisfactory methodology that enhances the mechanical strength of GPC as the guidelines are not available in the standards to address this problem. Effective use of waste materials such as fly ash and recycled aggregate for the development of GPC is another major research focus in the proposed investigation.

Details

Construction Innovation , vol. 23 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 23 September 2020

Asif Ur Rehman and Vincenzo M. Sglavo

Three-dimensional (3D) printing technology allows geometric complexity and customization with a significant reduction in the structural environmental impact. Nevertheless, it…

Abstract

Purpose

Three-dimensional (3D) printing technology allows geometric complexity and customization with a significant reduction in the structural environmental impact. Nevertheless, it poses a serious threat to the environment when organic binders are used. Binder jet printing of alkali-activated geopolymer precursor can represent a successful and environmental-friendly alternative.

Design/methodology/approach

The present work reports about the successful 3D printing of metakaolin-based alkali-activated concrete, with dimensional integrity and valuable mechanical behavior.

Findings

The geometric behavior was studied as a function of alkali activator flow rate, and the minimum geometric deviation with complete saturation was recorded at 103 mg/s. The printed specimen is characterized by a modulus of rupture as high as 4.4 MPa at 135 mg/s.

Practical implications

The 3D printed geopolymer-based concrete can be potentially used in a wide range of structural applications from construction to thermal insulation elements.

Originality/value

The analysis of the 3D geopolymer-based concrete printing system and material conducted in this paper is original.

Details

Rapid Prototyping Journal, vol. 26 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 May 2020

Niragi Dave, Vaishali Sahu and Anil Kumar Misra

The purpose of this work is to study the in-situ performance of ternary geopolymer concrete in road repair work. Geopolymer cement concrete is an attractive alternative to…

Abstract

Purpose

The purpose of this work is to study the in-situ performance of ternary geopolymer concrete in road repair work. Geopolymer cement concrete is an attractive alternative to Portland cement concrete owing to environmental, economic and performance benefits. Industrial wastes, such as fly ash (FA) and ground granular blast furnace slag (GGBS), have been extensively used to manufacture unitary and binary geopolymer concrete with heat activation (at different temperature); however, it has indicated a limitation for its application in precast industry only.

Design/methodology/approach

In the present study, efforts have been made to produce a ternary geopolymer concrete mix, using GGBS, FA and Silica fumes (SF) in varied proportion mixed with 8 M sodium hydroxide (NaOH) as alkali activator and cured at ambient temperature. Total ten geopolymer concrete mixes have been prepared and tested for strength and durability properties and compared with control mix of ordinary Portland cement (OPC). Based on the mechanical properties of various mixes, an optimum geopolymer concrete mix has been identified. The control mix and optimum geopolymer have been studied for microstructural properties through scanning electron microscopy.

Findings

The in situ performance of the optimum mix has been assessed when used as a road repair material on a stretch of road. The ternary geopolymer concrete mixes (a) 65% GGBS + 25% FA + 10% SF, (b) 70% GGBS + 20% FA + 10% SF, and (c) 75% GGBS + 15% FA + 10% SF have resulted in good strength at ambient temperature and the mix 75% GGBS + 15% FA + 10% SF have shown good in situ performance when tested for road repair work.

Originality/value

Geopolymer concrete is gaining interest in many fields as an alternative to conventional concrete, as it not only reduces carbon footprint due to huge cement production but also provides a sustainable disposal method for many industrial wastes. This paper focuses on finding some alternative of OPC concrete to reduce dependency on the OPC.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of 89