Search results

1 – 4 of 4
Article
Publication date: 12 July 2013

Sunil Das, Alexander Applegate, Satyendra Biswas and Emil Petriu

The design of aliasing-free space support hardware for built-in self-testing in very large scale integration circuits and systems is of immense significance, specifically due to…

Abstract

The design of aliasing-free space support hardware for built-in self-testing in very large scale integration circuits and systems is of immense significance, specifically due to the design paradigm shift in recent years from system-on-board to system-on-chip. This paper discusses approach to realizing aliasing-free space compaction hardware targeting particularly embedded cores-based system-on-chips for single stuck-line faults, extending well-known concept from conventional switching theory, viz. that of compatibility relation as used in the minimization of incompletely specified sequential machines. For a pair of response outputs of the circuit under test, the method introduces the notion of fault detection compatibility and conditional fault detection compatibility (conditional upon some other response output pair being simultaneously fault detection compatible) with respect to two-input AND/NAND, OR/NOR and XOR/XNOR logic, respectively. The process is illustrated with design details of space compactors for the International Symposium on Circuits and Systems or ISCAS 85 combinational (and ISCAS 89 full-scan sequential) benchmark circuits using simulation programs ATALANTA and FSIM, attesting to the relevance of the technique from the viewpoint of simplicity, resultant low area overhead and full fault coverage for single stuck-line faults, thereby making it an appropriate choice in commercial design environments.

Article
Publication date: 29 June 2012

Sunil Das, Satyendra Biswas, Voicu Groza and Mansour Assaf

Realizing aliasing-free space compressor for built-in self-testing of very large scale integration circuits and systems is of immense practical significance, especially due to the…

Abstract

Realizing aliasing-free space compressor for built-in self-testing of very large scale integration circuits and systems is of immense practical significance, especially due to the design paradigm shift in recent years from system-on-board to system-on-chip. This paper explores and provides new results on extending the scope of a recently developed approach to synthesizing aliasing-free space compaction hardware targeting particularly embedded cores-based system-on-chips for single stuck-line faults. For a pair of response outputs of the circuit under test, the method uses the notion of fault detection compatibility and conditional fault detection compatibility (conditional upon some other response output pair being simultaneously fault detection compatible) with respect to two-input AND/NAND nonlinear logic. The process is illustrated with development details of space compressors for the International Symposium on Circuits and Systems or ISCAS 85 combinational and ISCAS 89 full-scan sequential benchmark circuits (results on full-scan sequential circuits though not included in the paper) using simulation programs ATALANTA and FSIM, showing the relevance of the technique from the viewpoint of simplicity, resultant low area overhead and full fault coverage for single stuck-line faults, thereby making it an ideal choice in actual design environments.

Article
Publication date: 19 February 2013

Sunil Das, Satyendra Biswas, Emil Petriu, Voicu Groza, Mansour Assaf and Amiya Nayak

The design of space-efficient support hardware for built-in self-testing (BIST) is of immense significance in the synthesis of present day very large-scale integration (VLSI…

Abstract

The design of space-efficient support hardware for built-in self-testing (BIST) is of immense significance in the synthesis of present day very large-scale integration (VLSI) circuits and systems, particularly in the context of design paradigm shift from system-on-board to system-on-chip (SOC). This paper presents an overview of the general problem of designing zero-aliasing or aliasing-free space compression hardware in relation to embedded cores-based SOC for single stuck-line faults in particular, extending the well-known concepts of conventional switching theory, and of incompatibility relation to generate maximal compatibility classes (MCCs) utilizing graph theory concepts, based on optimal generalized sequence mergeability, as developed by the authors in earlier works. The paper briefly presents the mathematical basis of selection criteria for merger of an optimal number of outputs of the module under test (MUT) for realizing maximum compaction ratio in the design, along with extensive simulation results on International Symposium on Circuits and Systems or ISCAS 85 combinational and ISCAS 89 full-scan sequential benchmark circuits, with simulation programs ATALANTA, FSIM, and COMPACTEST.

Article
Publication date: 22 July 2014

Mansour Assaf, Leslie-Ann Moore, Sunil Das, Satyendra Biswas and Scott Morton

A low-level logic fault test simulation environment targeted towards application-specific integrated circuits (ASICs) in particular is proposed in this paper. The simulation…

Abstract

A low-level logic fault test simulation environment targeted towards application-specific integrated circuits (ASICs) in particular is proposed in this paper. The simulation environment emulates a typical built-in self-testing (BIST) environment with test pattern generator (TPG) that sends its outputs to a circuit (core) under test (CUT) and the output streams from the CUT are fed into an output response analyzer (ORA). The developed simulator is very suitable for testing embedded digital intellectual property (IP) cores-based systems. The paper describes the total test architecture environment, including the application of the logic fault simulator. Results on simulation on some specific International Symposium on Circuits and Systems (ISCAS) 85 combinational and ISCAS 89 sequential benchmark circuits are provided as well for appraisal.

1 – 4 of 4