Search results

1 – 10 of 12
Article
Publication date: 19 June 2019

Ali Akbar Abbasian Arani, Ali Arefmanesh and Hamidreza Ehteram

The purpose of this paper is to recommend a validated numerical model for simulation the flue gases heat recovery recuperators. Due to fulfill of this demand, the influences of…

Abstract

Purpose

The purpose of this paper is to recommend a validated numerical model for simulation the flue gases heat recovery recuperators. Due to fulfill of this demand, the influences of ash fouling characteristics during the transient/steady-state simulation and optimization of a 3D complex heat exchanger equipped with inner plain fins and side plate fins are studied.

Design/methodology/approach

For the particle dispersion modeling, the discrete phase model is applied and the flow field has been solved using SIMPLE algorithm.

Findings

According to obtained results, for the recuperator equipped with combine inner plain and side plate fins, determination of ash fouling characteristics is really important, effective and determinative. It is clear that by underestimating the ash fouling characteristics, the achieved results are wrong and different with reality.

Originality/value

Finally, the configuration with inner plain fins with characteristics of: di =5 mm, do = 6 mm, dg = 2 mm, dk = 3 mm and NIPFT = 9 and side plate fins with characteristics of: TF = 3 mm, PF = 19 mm, NSPF = 17·2 = 34, WF = 10 mm, HF = 25 mm, LF = 24 mm and ß = 0° is introduced as the optimum model with the best performance among all studied configurations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 June 2019

Behrouz Mozafari, Ali Akbar Abbasian Arani, Ghanbar Ali Sheikhzadeh and Mahmoud Salimi

The purpose of this paper is to study the effects of using different Brownian models on natural and mixed convection fluid flow and heat transfer inside the square enclosure…

Abstract

Purpose

The purpose of this paper is to study the effects of using different Brownian models on natural and mixed convection fluid flow and heat transfer inside the square enclosure filled with the AlOOH–water nanofluid.

Design/methodology/approach

Due to fulfill of this demand, five different models for the effective thermal conductivity and viscosity of the nanofluid are considered. The following results are presented for the Ra=107 to 1010 and Ri=0.01 to 100, whereas the volume fraction of the nanoparticles is varied from φ = 0.01 to 0.04.

Findings

According to the obtained results, increasing of Rayleigh number and reduction of Richardson number leads to the higher values of the average Nusselt number and entropy generation. Also, it is realized that, variation trend of the average Nusselt number and entropy generation in all cases is increasing by growing the volume fraction. It is found that the obtained average Nusselt numbers and entropy generations with Koo and Kleinstreuer are the highest among all the studied cases, and it is followed by Patel, Vajjha and Das, Corcione and Maxwell–Brinkman models, respectively.

Originality/value

Based on the results of present investigation, the Nusselt number difference predicted between the Maxwell–Brinkman model (as constant-property model) and Koo and Kleinstreuer model is about 7.84 per cent at 0.01 per cent volume fraction and 5.47 per cent at 0.04 per cent volume fraction for the Rayleigh number equal to 107. The entropy generation difference predicted between the two above studied model is about 8.05 per cent at 0.01 per cent volume fraction and 5.86 per cent at 0.04 per cent volume fraction for the Rayleigh number equal to 107. It is observed that using constant-property model has a significant difference in the obtained results with the results of other variable-property models.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 August 2022

Dipak Kumar Mandal, Nirmalendu Biswas, Nirmal K. Manna, Rama Subba Reddy Gorla and Ali J. Chamkha

This study aims to numerically examine the influence of various geometric parameters of a novel W-shaped porous cavity undergoing hybrid nanofluid-based magnetohydrodynamic mixed…

293

Abstract

Purpose

This study aims to numerically examine the influence of various geometric parameters of a novel W-shaped porous cavity undergoing hybrid nanofluid-based magnetohydrodynamic mixed convection. The W-shaped cavity is modified from the classical trapezoidal cavity by constructing a triangular shape at its bottom. This cavity is isothermally active at the bottom, with different numbers and heights of the triangular peak (or undulation). The heated hybrid nanofluid (Cu–Al2O3–H2O) flow is cooled through the translating top wall. Inclined sidewalls are thermally insulated. To compare the impacts of change in geometric parameters, a square cavity under similar boundary conditions is also simulated. This study is carried out systematically addressing the various influences from a range of parameters like side angles (γ), number (m) and height (λ) of the bottom undulation, Reynolds number (Re), Richardson number (Ri), Darcy number (Da), Hartmann number (Ha), hybrid nanoparticles volume fraction (φ) on the overall thermal performance of the cavity.

Design/methodology/approach

Applying the finite volume approach, the transport equations involving multiphysical conditions like porous substance, hybrid nanofluid, magnetic field and shearing force are solved numerically by using a written FORTRAN-based code following the SIMPLE algorithm. The algebraic equations are solved over all the control volumes in an iterative process using the alternate direction implicit scheme and the tri-diagonal matrix algorithm. The converged solution of the iterative process is obtained when the relative error levels satisfy the convergence criterion of 10–8 and 10–10 for the maximum residuals and the mass defect, respectively.

Findings

It is revealed that an increase in the bottom undulation height always improves the thermal energy transfer despite the reduction of fluid volume. Thermal energy transfer significantly depends on the heating and cooling surface lengths, fluid volume in the cavity and the magnitude of the bottom undulation height of the W-shaped cavity. With the increase in bottom undulation height, effective heating length increases by ∼28%, which leads to a ∼15% reduction in the effective volume of the working fluid and a gain in heat transfer by ∼56.48%. In general, the overall thermal energy transport is improved by increasing Re, Ri and Da; whereas it is suppressed by increasing Ha.

Research limitations/implications

There are many opportunities for future research experimentally or numerically, considering different curvature effects, orientations of the geometry, working fluids, boundary conditions, etc. Furthermore, this study could be extended by considering unsteady flow or turbulent flow.

Practical implications

In many modern systems/processes pertaining to materials processing, continuous casting, food processing, chemical reactors, biomedical applications, etc. fine control in the transport process is a major concern. The findings of this analysis can effectively be useful for other applications for getting more control features in terms of achieving the operational objectives. The approach of the system analysis (considering geometrical size parameters to delve into the underlying transport physics) and the obtained simulated results presented in the work can usefully be applicable to similar thermal systems/devices such as materials processing, thermal mixing, chemical reactors, heat exchangers, etc.

Originality/value

From the well-documented and vast pool of literature survey, it is understood that there exists no such investigation on the considered geometry and study. This study contributes a lot to understanding magnetic field moderated thermofluid flow of a hybrid nanofluid in a porous medium filled W-shaped cavity, in consideration of different geometrical shape parameters (undulation peak numbers at bottom wall, peak heights, side angles and heating and cooling length). Findings brought by this study provide great insights into the design and operation under various ranges of multiphysical thermofluid-flow processing phenomena.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 8 August 2022

Mahdi Ghaemi Asl and Mohammad Ghasemi Doudkanlou

This study aims to identify and compare the measurement models of earnings management (EM) appropriate to the Iranian Islamic banking system. The importance of reported profit…

1128

Abstract

Purpose

This study aims to identify and compare the measurement models of earnings management (EM) appropriate to the Iranian Islamic banking system. The importance of reported profit figures has motivated business executives, who also perform financial reporting, to manipulate these figures. These measures are referred to as “earnings management,” which negatively influence the quality of reported earnings and financial statements' reliability.

Design/methodology/approach

In this study, four methods, namely, Jones (1991), modified Jones (Dechow et al., 1995), Kasznik (1999) and Kothari et al. (2005), were used to measure the EM index in 25 Iranian Islamic banks (IBs) registered with the Tehran Stock Exchange and/or the Central Bank of Iran. The study covered the period 2005–2020. Following the aforementioned methods, this research implemented templates that were repeatedly tested in subsequent studies using accruals to discover EM.

Findings

The results show that the Kasznik (1999) model is the preferred and compatible model with the Iranian Islamic banking system's accrual behaviour due to the consistency of the measurement coefficients with theoretical and previous research findings. Therefore, total accruals, including discretionary accruals and non-discretionary accruals, have the most correspondence with (1) property, machinery and equipment; (2) the change in cash flow from operating activities; and (3) the difference of change in revenue (ΔREV) and change in net receivable accounts (ΔREC).

Originality/value

This is the first investigation in the Iranian Islamic banking system. The research contributes to the Iranian Islamic banking system literature on the implements of EM, which could be appealed to in the context of developing countries like Iran. Finally, this study highlights the different EM capabilities in Islamic banking systems similar to the Iranian banking arrangement.

Details

ISRA International Journal of Islamic Finance, vol. 14 no. 3
Type: Research Article
ISSN: 0128-1976

Keywords

Article
Publication date: 25 February 2021

Leo Lukose and Tanmay Basak

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the…

Abstract

Purpose

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the boundary walls, thermal conditions and/ or kinematics of objects embedded in the cavities and kinematics of external flow field through the ventilation ports. Experimental works on mixed convection have also been addressed.

Design/methodology/approach

This review is based on 10 unified models on mixed convection within cavities. Models 1–5 involve mixed convection based on the movement of single or double walls subjected to various temperature boundary conditions. Model 6 elucidates mixed convection due to the movement of single or double walls of cavities containing discrete heaters at the stationary wall(s). Model 7A focuses mixed convection based on the movement of wall(s) for cavities containing stationary solid obstacles (hot or cold or adiabatic) whereas Model 7B elucidates mixed convection based on the rotation of solid cylinders (hot or conductive or adiabatic) within the cavities enclosed by stationary or moving wall(s). Model 8 is based on mixed convection due to the flow of air through ventilation ports of cavities (with or without adiabatic baffles) subjected to hot and adiabatic walls. Models 9 and 10 elucidate mixed convection due to flow of air through ventilation ports of cavities involving discrete heaters and/or solid obstacles (conductive or hot) at various locations within cavities.

Findings

Mixed convection plays an important role for various processes based on convection pattern and heat transfer rate. An important dimensionless number, Richardson number (Ri) identifies various convection regimes (forced, mixed and natural convection). Generalized models also depict the role of “aiding” and “opposing” flow and combination of both on mixed convection processes. Aiding flow (interaction of buoyancy and inertial forces in the same direction) may result in the augmentation of the heat transfer rate whereas opposing flow (interaction of buoyancy and inertial forces in the opposite directions) may result in decrease of the heat transfer rate. Works involving fluid media, porous media and nanofluids (with magnetohydrodynamics) have been highlighted. Various numerical and experimental works on mixed convection have been elucidated. Flow and thermal maps associated with the heat transfer rate for a few representative cases of unified models [Models 1–10] have been elucidated involving specific dimensionless numbers.

Originality/value

This review paper will provide guidelines for optimal design/operation involving mixed convection processing applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 June 2019

Farzad Pourfattah, Saeid Yousefi, Omid Ali Akbari, Mahsa Adhampour, Davood Toghraie and Maboud Hekmatifar

The purpose of this paper is to numerically simulate the nanofluid boiling inside a tube in turbulent flow regime and to investigate the effect of adding volume faction of CuO…

Abstract

Purpose

The purpose of this paper is to numerically simulate the nanofluid boiling inside a tube in turbulent flow regime and to investigate the effect of adding volume faction of CuO nanoparticles on the boiling process.

Design/methodology/approach

To make sure the accuracy of the obtained numerical results, the results of this paper have been compared with the experimental results and an acceptable coincidence has been achieved. In the current paper, by Euler–Euler method, the phase change of boiling phenomenon has been modeled. The presented results are the local Nusselt number distribution, temperature distribution of wall, the distribution of volume fraction of vapor phase and fluid temperature at the center of the tube.

Findings

The obtained results indicate that using nanofluid is very effective in the postponement of the boiling process. Hence, by change the amount of volume fraction of nanoparticles in base fluid, the location of phase change and bubble creation are changed. Also, at the Reynolds numbers of 50,000, 100,000 and 150,000 with the volume fraction of 2 per cent, the beginning locations of phase change process are, respectively, 2D, 10D and 13D, and for the volume fraction of 4 per cent, the beginning locations of phase change are 4D, 18D and 19D, respectively. These results indicate that, as the volume fraction of nanoparticles increases, the location of the start of the phase change process is postponed that this issue causes the increment of heat transfer from wall to fluid and the reduction of wall temperature. In general, it can be stated that, in boiling flows, using nanofluid because of the delay in boiling phenomenon has a good effect on heat transfer enhancement of heated walls. Also, the obtained results show that, by increasing Reynolds number, the created vapor phase reduces that leads to increase of the Nusselt number.

Originality/value

The paper investigates the effect of using nanofluid in phase change process of cooling fluid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 June 2017

Meysam Amini, Esmaeil GhasemiKafrudi, Mohammad Reza Habibi, Azin Ahmadi and Akram HosseinNia

Due to the extensive industrial applications of stagnation flow problems, the present work aims to investigate the magnetohydrodynamics (MHD) flow and heat transfer of a magnetite…

Abstract

Purpose

Due to the extensive industrial applications of stagnation flow problems, the present work aims to investigate the magnetohydrodynamics (MHD) flow and heat transfer of a magnetite nanofluid (here Fe3O4–water nanofluid) impinging a flat porous plate under the effects of a non-uniform magnetic field and chemical reaction with variable reaction rate.

Design/methodology/approach

Similarity transformations are applied to reduce the governing partial differential equations with boundary conditions into a system of ordinary differential equations over a semi-infinite domain. The modified fourth-order Runge–Kutta method with the shooting technique which is developed for unbounded domains is conducted to give approximate solutions of the problem, which are then verified by results of other researchers, showing very good agreements.

Findings

The effects of the volume fraction of nanoparticles, permeability, magnetic field, chemical reaction and Schmidt number on velocity, temperature and concentration fields are examined and graphically illustrated. It was found that fluid velocity and temperature fields are affected strongly by the types of nanoparticles. Moreover, magnetic field and radiation have strong effects on velocity and temperature fields, fluid velocity increases and thickness of the velocity boundary layer decreases as magnetic parameter M increases. The results also showed that the thickness of the concentration boundary layer decreases with an increase in the Schmidt number, as well as an increase in the chemical reaction coefficient.

Research limitations/implications

The thermophysical properties of the magnetite nanofluid (Fe3O4–water nanofluid) in different conditions should be checked.

Practical implications

Stagnation flow of viscous fluid is important due to its vast industrial applications, such as the flows over the tips of rockets, aircrafts, submarines and oil ships. Moreover, nanofluid, a liquid containing a dispersion of sub-micronic solid particles (nanoparticles) with typical length of the order of 1-50 nm, showed abnormal convective heat transfer enhancement, which is remarkable.

Originality/value

The major novelty of the present work corresponds to utilization of a magnetite nanofluid (Fe3O4–water nanofluid) in a stagnation flow influenced by chemical reaction and magnetic field. It should be noted that in addition to a variable chemical reaction, the permeability is non-uniform, while the imposed magnetic field also varies along the sheet. These, all, make the present work rather original.

Details

World Journal of Engineering, vol. 14 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 April 2021

Ali Akbar Abbasian Arani and Hamed Uosofvand

This paper aims to present a numerical investigation on laboratory-scale segmental baffles shell-and-tube heat exchanger (STHX) having various tube bundles and baffle…

Abstract

Purpose

This paper aims to present a numerical investigation on laboratory-scale segmental baffles shell-and-tube heat exchanger (STHX) having various tube bundles and baffle configuration.

Design/methodology/approach

To discover the higher performance the thermohydraulic behavior of shell-side fluid flow with circular, elliptical and twisted oval tube bundles with segmental and inclined segmental baffled is compared. Shell side turbulent flow and heat transfer are simulated by a finite volume discretization approach using SolidWorks Flow Simulation. To achieve greater configuration performance of this device, the following two approaches is considered: using the inclined baffle with 200 angles of inclination and applying the different tube bundle.

Findings

Different parameters as heat transfer rate, pressure drop (Δp), heat transfer coefficient (h) and heat transfer coefficient to pressure drop ratio (h/Δp) are presented and discussed. Besides, for considering the effect of pressure penalty and heat transfer improvement instantaneously, the efficiency evaluation coefficient (EEC) in the fluid flow and heat transfer based on the power required to provide the real heat transfer augmentation are used.

Originality/value

Obtained results displayed that, at the equal mass flow rate, the twisted oval tubes with segmental baffle decrease the pressure drop 53.6% and 35.64% rather than that the circular and elliptical tubes bundle, respectively. By comparing the (h/Δp) ratio, it can result that the STHX with twisted oval tubes bundle (both segmental and inclined baffle) has better performance than other kinds of the tube bundles. Present results showed that the values of the EEC for all provided models are higher than 1, except for elliptical tube bundles with segmental baffles. The STHX with twisted oval tube bundles and segmental baffle gives the highest EEC value equal to 1.16 in the range of investigated mass flow.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 January 2020

Ali Akbar Abbasian Arani and Hamed Uosofvand

This paper aims to investigate the fluid flow and heat transfer of a laboratory shell and tube heat exchanger that are analyzed using computational fluid dynamic approach by…

Abstract

Purpose

This paper aims to investigate the fluid flow and heat transfer of a laboratory shell and tube heat exchanger that are analyzed using computational fluid dynamic approach by SOLIDWORKS flow simulation (ver. 2015) software.

Design/methodology/approach

In this study, several types of baffle including segmental baffle, butterfly baffle, helical baffle, combined helical-segmental baffle, combined helical-disk baffle and combined helical-butterfly baffle are examined. Two important parameters as the heat transfer and pressure drop are evaluated and analyzed. Based on obtained results, segmental baffle has the highest amount of heat transfer and pressure drop. To assess the integrative performance, performance coefficient defines as “Q/Δp” is used.

Findings

This investigation showed that among the presented baffle types, the heat exchangers equipped with disk baffle has the highest heat transfer. In addition, in the same mass flow rate, the performance coefficient of the shell and tube heat exchanger equipped with helical-butterfly baffle is the highest among the proposed models.

Originality/value

After combined helical-butterfly baffle the butterfly baffle, disk baffle, helical-segmental baffle and helical-disk baffle show their superiority of 35.12, 25, 22 and 12 per cent rather than the common segmental baffle, respectively. Furthermore, except for the combined helical-disk baffle, the other type of combined baffle have better performance compare to the basic configuration (butterfly and segmental baffle).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 November 2023

Samrat Hansda, Anirban Chattopadhyay and Swapan K. Pandit

This study comprehensively examines entropy generation and thermosolutal performance of a ternary hybrid nanofluid in a partially active porous cabinet. The purpose of this study…

Abstract

Purpose

This study comprehensively examines entropy generation and thermosolutal performance of a ternary hybrid nanofluid in a partially active porous cabinet. The purpose of this study is to comprehend the intricate phenomena of double diffusion by investigating the dispersion behavior of Al2O3, CuO, and Ag nanoparticles in water.

Design/methodology/approach

The cabinet design consists of two horizontal walls and two curved walls with the lower border divided into a heated and concentrated region of length b and the remaining sections are adiabatic. The vertical borders are cold and low concentration, while the upper border is adiabatic. Two cavity configurations such as convex and concave are considered. A uniform porous medium is taken within the ternary hybrid nanofluid. This has been characterized by the Brinkman-extended Darcy model. Thermosolutal phenomena are governed by the Navier-Stokes equations and are solved by adopting a higher-order compact scheme.

Findings

The present study focuses on exploring the influence of several well-defined parameters, including Rayleigh number, Darcy number, Lewis number, Buoyancy ratio number, nanoparticle volume concentration and heater size. The results indicate that the ternary hybrid nanofluid outperforms both the mono and hybrid nanofluids in all considered aspects.

Originality/value

This study brings forth a significant contribution by uncovering novel flow features that have previously remained unexplored. By addressing a well-defined problem, the work provides valuable insights into the enhancement of thermal transport, with direct implications for diverse engineering devices such as solar collectors, heat exchangers and microelectronics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Access

Year

All dates (12)

Content type

1 – 10 of 12