Search results

1 – 3 of 3
To view the access options for this content please click here
Article
Publication date: 21 August 2013

Giovanna Lilliu and Alberto Meda

Fire analysis of precast segmental tunnels involves several problems, mainly related to the soil-structure interaction during fire exposure, coupled with material…

Abstract

Fire analysis of precast segmental tunnels involves several problems, mainly related to the soil-structure interaction during fire exposure, coupled with material degradation. Temperature increase in the tunnel is the cause of thermal expansion of the lining, which is resisted by the soil pressure. Furthermore, the increase of temperature in the lining leads to severe damage to the reinforced concrete precast elements, which can jeopardise structural safety.

This problem has been analysed using an ideal case of a precast segmental tunnel excavated in a stratified soil. The analysis has been conducted with a commercial nonlinear FE element code. Initially, excavation of the tunnel was modelled in order to predict stresses in the lining due to the soil pressure and eventually fire exposure was considered. The reinforced concrete lining was modelled with a crack model in order to simulate the actual behaviour.

Results show the importance of considering the interaction with the soil and the degradation of the concrete lining.

Details

Journal of Structural Fire Engineering, vol. 4 no. 3
Type: Research Article
ISSN: 2040-2317

Content available
Article
Publication date: 6 June 2016

Marta Brunelli and Juri Meda

Abstract

Details

History of Education Review, vol. 45 no. 1
Type: Research Article
ISSN: 0819-8691

To view the access options for this content please click here
Article
Publication date: 21 March 2016

Alberto Brunete, Carlos Mateo, Ernesto Gambao, Miguel Hernando, Jukka Koskinen, Jari M Ahola, Tuomas Seppälä and Tapio Heikkila

This paper aims to propose a new technique for programming robotized machining tasks based on intuitive human–machine interaction. This will enable operators to create…

Abstract

Purpose

This paper aims to propose a new technique for programming robotized machining tasks based on intuitive human–machine interaction. This will enable operators to create robot programs for small-batch production in a fast and easy way, reducing the required time to accomplish the programming tasks.

Design/methodology/approach

This technique makes use of online walk-through path guidance using an external force/torque sensor, and simple and intuitive visual programming, by a demonstration method and symbolic task-level programming.

Findings

Thanks to this technique, the operator can easily program robots without learning every robot-specific language and can design new tasks for industrial robots based on manual guidance.

Originality/value

The main contribution of the paper is a new procedure to program machining tasks based on manual guidance (walk-through teaching method) and user-friendly visual programming. Up to now, the acquisition of paths and the task programming were done in separate steps and in separate machines. The authors propose a procedure for using a tablet as the only user interface to acquire paths and to make a program to use this path for machining tasks.

Details

Industrial Robot: An International Journal, vol. 43 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 3 of 3