Search results

1 – 10 of 153
Article
Publication date: 26 September 2019

Rusya Iryanti Yahaya, Norihan M. Arifin, Roslinda Nazar and Ioan Pop

The purpose of this paper is to study the flow and heat transfer of a hybrid nanofluid, Cu–Al2O3/water, past a permeable stretching/shrinking sheet. The effects of Brownian motion…

Abstract

Purpose

The purpose of this paper is to study the flow and heat transfer of a hybrid nanofluid, Cu–Al2O3/water, past a permeable stretching/shrinking sheet. The effects of Brownian motion and thermophoresis are considered here.

Design/methodology/approach

Similarity transformations are used to reduce the governing partial differential equations to a system of ordinary (similarity) differential equations. A MATLAB solver called the bvp4c is then used to compute the numerical solutions of equations (12) to (14) subject to the boundary conditions of equation (15). Then, the effects of various physical parameters on the flow and thermal fields of the hybrid nanofluid are analyzed.

Findings

Multiple (dual) solutions are found for the basic boundary layer equations. A stability analysis is performed to see which solutions are stable and, therefore, applicable in practice and which are not stable. Besides that, a comparison is made between the hybrid nanofluid and a traditional nanofluid, Cu/water. The skin friction coefficient and Nusselt number of the hybrid nanofluid are found to be greater than that of the other nanofluid. Thus, the hybrid nanofluid has a higher heat transfer rate than the other nanofluid. However, the increase in the shrinking parameter reduces the velocity of the hybrid nanofluid.

Originality/value

The present results are original and new for the study of the flow and heat transfer past a permeable stretching/shrinking sheet in Cu–Al2O3/water hybrid nanofluid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 July 2023

K. Thirumalaisamy and A. Subramanyam Reddy

The analysis of fluid flow and thermal transport performance inside the cavity has found numerous applications in various engineering fields, such as nuclear reactors and solar…

Abstract

Purpose

The analysis of fluid flow and thermal transport performance inside the cavity has found numerous applications in various engineering fields, such as nuclear reactors and solar collectors. Nowadays, researchers are concentrating on improving heat transfer by using ternary nanofluids. With this motivation, the present study analyzes the natural convective flow and heat transfer efficiency of ternary nanofluids in different types of porous square cavities.

Design/methodology/approach

The cavity inclination angle is fixed ω = 0 in case (I) and ω=π4 in case (II). The traditional fluid is water, and Fe3O4+MWCNT+Cu/H2O is treated as a working fluid. Ternary nanofluid's thermophysical properties are considered, according to the Tiwari–Das model. The marker-and-cell numerical scheme is adopted to solve the transformed dimensionless mathematical model with associated initial–boundary conditions.

Findings

The average heat transfer rate is computed for four combinations of ternary nanofluids: Fe3O4(25%)+MWCNT(25%)+Cu(50%),Fe3O4(50%)+MWCNT(25%)+Cu(25%),Fe3O4(33.3%)+MWCNT(33.3%)+Cu(33.3%) and Fe3O4(25%)+MWCNT(50%)+Cu(25%) under the influence of various physical factors such as volume fraction of nanoparticles, inclined magnetic field, cavity inclination angle, porous medium, internal heat generation/absorption and thermal radiation. The transport phenomena within the square cavity are graphically displayed via streamlines, isotherms, local and average Nusselt number profiles with adequate physical interpretations.

Practical implications

The purpose of this study is to determine whether the ternary nanofluids may be used to achieve the high thermal transmission in nuclear power systems, generators and electronic device applications.

Social implications

The current analysis is useful to improve the thermal features of nuclear reactors, solar collectors, energy storage and hybrid fuel cells.

Originality/value

To the best of the authors’ knowledge, no research has been carried out related to the magneto-hydrodynamic natural convective Fe3O4+MWCNT+Cu/H2O ternary nanofluid flow and heat transmission filled in porous square cavities with an inclined cavity angle. The computational outcomes revealed that the average heat transfer depends not only on the nanoparticle’s volume concentration but also on the existence of heat source and sink.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 March 2021

Najiyah Safwa Khashi'ie, Norihan M. Arifin, John H. Merkin, Rusya Iryanti Yahaya and Ioan Pop

The purpose of this paper is to numerically analyze the stagnation point flow of Cu-Al2O3/water hybrid nanofluid with mixed convection past a flat plate and circular cylinder.

Abstract

Purpose

The purpose of this paper is to numerically analyze the stagnation point flow of Cu-Al2O3/water hybrid nanofluid with mixed convection past a flat plate and circular cylinder.

Design/methodology/approach

The similarity equations that reduced from the boundary layer and energy equations are solved using the bvp4c solver. The duality of solutions is observed within the specific range of the control parameters, namely, mixed convection parameter λ, curvature parameter γ and nanoparticles volumetric concentration ϕ1 for alumina, while for copper ϕ2. The stability analysis is also designed to justify the particular solutions’ stability. Additionally, the idea to obtain the solution for large value of λ and γ is also presented in this paper.

Findings

Two solutions exist in opposing and assisting flows up to a critical value λc where λc lies in the opposing region. An upsurge of the curvature parameter tends to extend the critical value (delay the separation process), whilst increase the heat transfer performance of the working fluid. Meanwhile, the application of hybrid Cu-Al2O3/water nanofluid also can decelerate the separation of laminar boundary layer flow and produce higher heat transfer rate than the Cu–water nanofluid and pure water.

Originality/value

The results are new and original. This study benefits to the other researchers, specifically in the observation of the fluid flow characteristics and heat transfer rate of the hybrid nanofluid. Also, this paper features with the mathematical formulation for the solution with large values of λ and γ.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 October 2022

Tongsheng Wang, Anna Li, Guang Xi and Zhu Huang

The purpose of this study is to investigate the enhancement and suppression of heat transfer for hybrid nanofluids (Cu–Al2O3/water) in a square enclosure containing a…

Abstract

Purpose

The purpose of this study is to investigate the enhancement and suppression of heat transfer for hybrid nanofluids (Cu–Al2O3/water) in a square enclosure containing a thermal-conductive cylinder when the Lorentz force is applied to the hybrid nanofluids.

Design/methodology/approach

Since the inner conductive cylinder in present research has a complex geometry, an in-house meshless method, namely, the local radial basis function (LRBF) method, is applied to solve the 2 dimensional (2D) incompressible Navier–Stokes equation in the fluid domain and Fourier heat conduction equation in solid domain. The solid–fluid interface remains the physical continuity of temperature and heat flux. Only the Lorentz force is considered for the presence of the magnetic field. The conjugate natural convection is assumed to be steady, thus only fully developed heat exchange from the nanofluids to solid or vice versa is comprehensively investigated.

Findings

It can be concluded that Lorentz force plays a more significant role than hybrid nanofluids in enhancing/suppressing heat transfer when the orientation of magnetic field is the same to the x direction. The thermal conductivity ratio can dramatically change the isotherms and streamlines as well as the mean value of the Nusselt number, resulting in totally different heat transfer phenomena. The included angle of magnetic field also has a significant effect on the heat transfer rate when it changes from horizontal to vertical.

Research limitations/implications

The constant thermo-physical properties of incompressible fluid and the 2D steady flow are considered in this study.

Originality/value

The conjugate MHD natural convection of hybrid nanofluids is numerically investigated by an in-house meshless LRBF method. The enhancement and suppression of heat transfer under the combined influence of the volume fraction of nanoparticles, Hartmann number and the thermal conductivity ratio are comprehensively investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 August 2017

Morteza Heydari and Hossein Shokouhmand

The purpose of this paper is to evaluate differences between the results of constant property and variable property approaches in solving the problem of Al2O3-water nanofluid heat…

Abstract

Purpose

The purpose of this paper is to evaluate differences between the results of constant property and variable property approaches in solving the problem of Al2O3-water nanofluid heat transfer in an annular microchannel. Also, the effect of nanoparticle diameter on flow and heat transfer characteristics is investigated.

Design/methodology/approach

Thermo-physical properties of the nanofluid including density, specific heat, viscosity and thermal conductivity are assumed to be temperature dependent. Governing equations are descritized using the finite volume method and solved by SIMPLE algorithm.

Findings

The results reveal that the constant property assumption is unable to predict the correct trend of variations along the microchannel for some of the characteristics, especially when the range of temperature change near the wall is considerable. In the fully developed region, constant property solution overestimates the values of shear stress near the walls of the microchannel. In addition, the values of Nusselt numbers are different for the two solutions. Furthermore, a decrease in wall’s shear stress has been observed as a result of increasing nanoparticle size.

Originality/value

This paper reflects that how the friction factor and heat transfer vary along the microchannel in temperature dependent modeling, which is not reflected in the results of constant property approach. To the best of the authors’ knowledge, there is no similar investigation of the effect of nanofluid variable properties with Pr=5 or in annular geometry.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 August 2021

Iskandar Waini, Anuar Ishak, Ioan Pop and Roslinda Nazar

This paper aims to examine the Cu-Al2O3/water hybrid nanofluid flow over a shrinking sheet in the presence of the magnetic field and dust particles.

110

Abstract

Purpose

This paper aims to examine the Cu-Al2O3/water hybrid nanofluid flow over a shrinking sheet in the presence of the magnetic field and dust particles.

Design/methodology/approach

The governing partial differential equations for the two-phase flow of the hybrid nanofluid and the dust particles are reduced to ordinary differential equations using a similarity transformation. Then, these equations are solved using bvp4c in MATLAB software. The bvp4c solver is a finite-difference code that implements the three-stage Lobatto IIIa formula. The numerical results are gained for several values of the physical parameters. The effects of these parameters on the flow and the thermal characteristics of the hybrid nanofluid and the dust particles are analyzed and discussed. Later, the temporal stability analysis is used to determine the stability of the dual solutions obtained as time evolves.

Findings

The outcome shows that the flow is unlikely to exist unless satisfactory suction strength is imposed on the shrinking sheet. Besides, the heat transfer rate on the shrinking sheet decreases with the increase of . However, the increase in and lead to enhance the heat transfer rate. Two solutions are found, where the domain of the solutions is expanded with the rising of, and. Consequently, the boundary layer separation on the surface is delayed in the presence of these parameters. Implementing the temporal stability analysis, it is found that only one of the solutions is stable as time evolves.

Originality/value

The dusty fluid problem has been widely studied for the flow over a stretching sheet, but only limited findings can be found for the shrinking counterpart. Therefore, this study considers the problem of the dusty fluid flow over a shrinking sheet containing Cu-Al2O3/water hybrid nanofluid with the effect of the magnetic field. In fact, this is the first study to discover the dual solutions of the dusty hybrid nanofluid flow over a shrinking sheet. Also, further analysis shows that only one of the solutions is stable as time evolves.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 September 2019

Paluru Sreedevi, P. Sudarsana Reddy and Mikhail Sheremet

The purpose of this study is to analyze the impact of chemical reaction and thermal radiation on mixed convection flow, heat and mass transfer characteristics of nanofluid through…

Abstract

Purpose

The purpose of this study is to analyze the impact of chemical reaction and thermal radiation on mixed convection flow, heat and mass transfer characteristics of nanofluid through a wedge occupied with water–TiO2 and water–Al2O3 made nanofluid by considering velocity, temperature and concentration slip conditions in present investigation.

Design/methodology/approach

Using acceptable similarity transformations, the prevailing partial differential equations have been altered into non-linear ordinary differential equations and are demonstrated by the diverse thermophysical parameters. The mathematical model is solved numerically by implementing Galarkin finite element method and the outcomes are shown in tables and graphs.

Findings

The temperature and concentration fields impede as magnetic field parameter improves in both water–Al2O3 and water–TiO2 nanofluid. While there is contradiction in the velocity field as the values of magnetic field parameter rises in both nanofluids. The non-dimensional velocity rate, rate of temperature and rate of concentration rise with improved values of Weissenberg number.

Originality/value

Nanofluid flows past wedge-shaped geometries have gained much consideration because of their extensive range of applications in engineering and science, such as, magnetohydrodynamics, crude oil extraction, heat exchangers, aerodynamics and geothermal systems. Virtually, these types of nanofluid flows happen in ground water pollution, aerodynamics, retrieval of oil, packed bed reactors and geothermal industries.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 September 2019

S. Hoseinzadeh, P.S. Heyns and H. Kariman

The purpose of this paper is to investigate the heat transfer of laminar and turbulent pulsating Al203/water nanofluid flow in a two-dimensional channel. In the laminar flow…

Abstract

Purpose

The purpose of this paper is to investigate the heat transfer of laminar and turbulent pulsating Al203/water nanofluid flow in a two-dimensional channel. In the laminar flow range, with increasing Reynolds number (Re), the velocity gradient is increased. Also, the Nusselt number (Nu) is increased, which causes increase in the overall heat transfer rate. Additionally, in the change of flow regime from laminar to turbulent, average thermal flux and pulsation range are increased. Also, the effect of different percentage of Al2O3/water nanofluid is investigated. The results show that the addition of nanofluids improve thermal performance in channel, but the using of nanofluid causes a pressure drop in the channel.

Design/methodology/approach

The pulsatile flow and heat transfer in a two-dimensional channel were investigated.

Findings

The numerical results show that the Al2O3/Water nanofluid has a significant effect on the thermal properties of the different flows (laminar and turbulent) and the average thermal flux and pulsation ranges are increased in the change of flow regime from laminar to turbulent. Also, the addition of nanofluid improves thermal performance in channels.

Originality/value

The originality of this work lies in proposing a numerical analysis of heat transfer of pulsating Al2O3/Water nanofluid flow -with different percentages- in the two-dimensional channel while the flow regime change from laminar to turbulent.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 April 2023

Chinedu Chinakwe, Adekunle Adelaja, Michael Akinseloyin and Olabode Thomas Olakoyejo

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to…

Abstract

Purpose

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to numerically investigate the effects of inclination angle, volume concentration and Reynolds number on the thermal and hydraulic characteristics and entropy generation rates of water-based Al2O3 nanofluids through a smooth circular aluminum pipe in a turbulent flow.

Design/methodology/approach

A constant heat flux of 2,000 Watts is applied to the circular surface of the tube. Reynolds number is varied between 4,000 and 20,000 for different volume concentrations of alumina nanoparticles of 0.5%, 1.0% and 2.0% for tube inclination angles of ±90o, ±60o, ±45o, ±30o and 0o, respectively. The simulation is performed in an ANSYS Fluent environment using the realizable kinetic energy–epsilon turbulent model.

Findings

Results show that +45o tube orientation possesses the largest thermal deviations of 0.006% for 0.5% and 1.0% vol. concentrations for Reynolds numbers 4,000 and 12,000. −45o gives a maximum pressure deviation of −0.06% for the same condition. The heat transfer coefficient and pressure drop give maximum deviations of −0.35% and −0.39%, respectively, for 2.0% vol. concentration for Reynolds number of 20,000 and angle ±90o. A 95%–99.8% and 95%–98% increase in the heat transfer and total entropy generation rates, respectively, is observed for 2.0% volume concentration as tube orientation changes from the horizontal position upward or downward.

Originality/value

Research investigating the effect of inclination angle on thermal-hydraulic performance and entropy generation rates in-tube turbulent flow of nanofluid is very scarce in the literature.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 March 2018

P. Sudarsan A. Reddy and A. Chamkha

This paper aims to understand the influence of velocity slip, nanoparticle volume fraction, chemical reaction and non-linear thermal radiation on MHD three-dimensional heat and…

167

Abstract

Purpose

This paper aims to understand the influence of velocity slip, nanoparticle volume fraction, chemical reaction and non-linear thermal radiation on MHD three-dimensional heat and mass transfer boundary layer flow over a stretching sheet filled with water-based alumina nanofluid. To get more meaningful results, the authors have taken nonlinear thermal radiation in the heat transfer process.

Design/methodology/approach

Suitable similarity variables are introduced to convert governing partial differential equations into the set of ordinary differential equations, and are solved numerically using a versatile, extensively validated finite element method with Galerkin’s weighted residual simulation. The velocity, temperature and concentration profiles of nanoparticles as well as skin friction coefficient, Nusselt number and Sherwood number for different non-dimensional parameters such as volume fraction, magnetic, radiation and velocity slip parameters as well as the Prandtl number are examined in detail, and are presented through plots and tables.

Findings

It is noticed that the rate of heat transfer enhances with higher values of nanoparticle volume fraction parameter. It is worth mentioning that the heat transfer rates improve as the values of increase. Increasing values of M, R, θw and β decelerates the thickness of the thermal boundary layer in the fluid regime. The heat transfer rates decelerate as the values of suction parameter increase.

Originality/value

The authors have written this paper based on the best of their knowledge on heat and mass transfer analysis of nanofluids. The information in this paper is new and not copied from any other sources.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 153