Search results

1 – 10 of 12
Article
Publication date: 14 May 2020

Yafei Deng, Xiaotao Pan, Guoxun Zeng, Jie Liu, Sinong Xiao and Zhenquan Zhou

This paper aims to improve the tribological properties of aluminum alloys and reduce their wear rate.

Abstract

Purpose

This paper aims to improve the tribological properties of aluminum alloys and reduce their wear rate.

Design/methodology/approach

Carbon is placed in the model at room temperature, pour 680°C of molten aluminum into the pressure chamber, and then pressed it into the mold containing carbon felt through a die casting machine, and waited for it to cool, which used an injection pressure of 52.8 MPa and held the same pressure for 15 s.

Findings

The result indicated that the mechanical properties of matrix and composite are similar, and the compressive strength of the composite is only 95% of the matrix alloy. However, the composite showed a low friction coefficient, the friction coefficient of Gr/Al composite is only 0.15, which just is two-third than that of the matrix alloy. Similarly, the wear rate of the composite is less than 4% of the matrix. In addition, the composite can avoid severe wear before 200°C, but the matrix alloy only 100°C.

Originality/value

This material has excellent friction properties and is able to maintain this excellent performance at high temperatures.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2019-0454/

Details

Industrial Lubrication and Tribology, vol. 72 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 August 2023

Xinyan Bian, Xiaoguang Han, Jiamei Luo, Chengdi Li and Mingxing Hao

The purpose of this study is to prolong the service life of the Al–Si alloy cylinder and achieve the objective of energy saving and emission reduction by the composite treatments.

Abstract

Purpose

The purpose of this study is to prolong the service life of the Al–Si alloy cylinder and achieve the objective of energy saving and emission reduction by the composite treatments.

Design/methodology/approach

Chemical etching + laser texturing + filled MoS2 composite treatment was applied to the friction surface of aluminum–silicon (Al–Si) alloy cylinder. The friction coefficient and wear loss were measured to characterize the tribology property of cylinders.

Findings

The composite-treated Al–Si alloy cylinder had the lowest friction coefficient and weight loss. The friction coefficient and weight loss of the composite treatment were approximately 27.08% and 54.17% lower than those of the untreated sample, respectively. The laser micro-textures control the release of solid lubricant to the interface of friction pairs slowly, which prolongs the service life of cylinders.

Originality/value

The synergistic effect of the chemical etching + laser texturing + filled MoS2 modified the tribology properties of Al–Si alloy cylinder. The chemical etching raised the silicon particles to bear the load, and laser micro-textures control the release of solid lubricant to improve the lubrication property.

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 August 2018

P. Suresh and T. Poongodi

In the current scenario, new materials are gaining popularity due to higher specific properties of strength and stiffness, increase in wear resistance, dimensional stability at…

Abstract

Purpose

In the current scenario, new materials are gaining popularity due to higher specific properties of strength and stiffness, increase in wear resistance, dimensional stability at higher temperature, etc. Subsequently, the need for precise machining has also been increased enormously. The purpose of this paper is to study the surface roughness during the turning of Al-10%SiC and Al-5%SiC-5%Gr composites under different cutting conditions.

Design/methodology/approach

Artificial neural network (ANN) has been effectively employed in solving problems with effortless computation in the areas such as fault diagnosis, process identification, property estimation, data smoothing and error filtering, product design and development, optimisation and estimation of activity coefficients. Response surface method is also used to analyse the problems involving a number of input parameters and their corresponding relationship between one or more measured dependent responses. Using Design Expert.8 evaluation software package, a simpler and more efficient statistical RSM model has been designed. RSM models are created by using 27 experimental data measurements obtained from different turning conditions of aluminium alloy composites.

Findings

In this work, the surface roughness during turning of Al-10%SiC and Al-5%SiC-5%Gr composites under different cutting conditions has been studied. The surface roughness value is proportional with the increase in feed rate and depth of cut while inversely proportional with the cutting speed. In all turning conditions, Al-10%SiC composite has lower surface roughness values than Al-5%SiC-5%Gr hybrid composite. An ANN and response surface models have been developed to predict the surface roughness of machined surface. The experimental results concur well with predicted models.

Originality/value

In the present trend, new materials are gaining popularity due to higher specific properties of strength and stiffness, increase in wear resistance, dimensional stability at higher temperature, etc. Subsequently, the need for precise machining has also been increased enormously. In this work, the surface roughness during turning of Al-10%SiC and Al-5%SiC-5%Gr composites under different cutting conditions has been studied.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 March 2016

BM Viswanatha, M Prasanna Kumar, S Basavarajappa and TS Kiran

This paper aims to investigate the microstructure, hardness and tribological properties of hypoeutectic (Al-7Si) matrix reinforced with fixed quantities of 3 Wt.% graphite (Gr…

Abstract

Purpose

This paper aims to investigate the microstructure, hardness and tribological properties of hypoeutectic (Al-7Si) matrix reinforced with fixed quantities of 3 Wt.% graphite (Gr) and x Wt.% SiCp (x = 3, 6 and 9) hybrid composites.

Design/methodology/approach

The composites were fabricated by stir cast technique. The microstructure, hardness and tribological measurements were carried out on the base alloy and composites. The tribological investigation was carried out on pin-on-disc wear testing machine under dry sliding condition.

Findings

The wear rate decreases with the increase of SiCp into A356-3Gr composites. The composite containing A356-9SiCp-3Gr had better hardness and good wear resistance compared to the base alloy. Scanning electron microscope (SEM) and electro dispersive spectrometry (EDS) images were used to study the reinforcement distribution and worn-out surface of the specimens.

Originality/value

The present paper brings out a clear picture of the various events that take place under the worn-out surfaces leading to the generation of mechanical mixed layer.

Details

Industrial Lubrication and Tribology, vol. 68 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 February 2022

Doğan Şimşek, Dursun Özyürek and Serdar Salman

The purpose of this study, the tribological behaviors at different temperatures of aluminium matrix composites (AMCs) with different amounts of ZrO2 added were investigated.

Abstract

Purpose

The purpose of this study, the tribological behaviors at different temperatures of aluminium matrix composites (AMCs) with different amounts of ZrO2 added were investigated.

Design/methodology/approach

Aluminium graphite (A356/2 wt% graphite (solid lubricant)) composite powders prepared by adding four different amounts (3 wt%, 6 wt%, 9 wt% and 12 wt%) of Zirconia (ZrO2) to the matrix were mechanically alloyed for 4 h. Wear tests were conducted at five different temperatures (20 °C, 100 °C, 180 °C, 260 °C and 340 °C) and for three different sliding distances (53 m, 72 m and 94 m) on the pin-on-disc type wear tester.

Findings

Results of the study showed that the highest hardness and density value were measured for 12% ZrO2 added AMC material. Wear test results showed that weight loss increases with increasing temperature; weight loss decreases at all temperatures with the increasing amount of reinforcement in the matrix.

Originality/value

In this paper, the tribological properties of aluminium matrix composites produced by the mechanical alloying method by adding different amounts of ZrO2 were determined by simulating the tribological properties at different loads and temperatures.

Details

Industrial Lubrication and Tribology, vol. 74 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 November 2020

Vishal R. Mehta and Mayur P. Sutaria

The purpose of this paper is to evaluate the influence of temperature, load and sliding speed on wear and friction behavior of LM25/SiC composites in as-cast and heat-treated…

64

Abstract

Purpose

The purpose of this paper is to evaluate the influence of temperature, load and sliding speed on wear and friction behavior of LM25/SiC composites in as-cast and heat-treated conditions.

Design/methodology/approach

The LM25/SiC aluminum matrix composites (AMCs) were prepared using the stir casting process. The wear tests were carried out using a pin-on-disc setup in dry condition. The three levels of each parameter, i.e. 100, 150 and 200°C operating temperature; 15, 25 and 35 N load; 0.8, 1.6 and 2.4 m/sec sliding speed, were considered for the investigation. ANOVA has been carried out to evaluate the percentage contribution of parameters. Scanning electron microscope analysis of worn surfaces has been carried out to understand the wear mechanism.

Findings

The wear and coefficient of friction (COF) increase with the increase in the temperature, load and sliding speed within a selected range for as-cast as well as heat-treated LM25/SiC AMCs. The mean values of wear and COF in heat-treated samples were found to be lower than as-cast samples for all cases. It was observed that the percentage wear increases significantly as temperature increases in as-cast AMCS. Mild to severe wear transition was observed at 150°C. In heat-treated AMCs, mild wear was observed irrespective of temperature. It was also observed that as the temperature increases, transition of wear mechanism from abrasive to adhesive (including delamination) occurs earlier in as-cast samples as compared to heat-treated samples.

Originality/value

There is a lack of data on combined effect of temperature, load and sliding speed on tribological aspects of as-cast and heat-treated LM25/SiC AMCs, limiting its applications. The present research work has addressed this gap.

Details

World Journal of Engineering, vol. 18 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 April 2015

Adalet Zeren

– The purpose of this paper is to understand the effect of graphite content on the properties of aluminum alloy/silicon carbide/granite (Al/SiC/Gr) composites.

Abstract

Purpose

The purpose of this paper is to understand the effect of graphite content on the properties of aluminum alloy/silicon carbide/granite (Al/SiC/Gr) composites.

Design/methodology/approach

Hardness and wear tests were applied to the powder metallurgical composites, and microstructural characterization was conducted.

Findings

Optimum graphite content for maximum wear resistance is reported as weight 6 per cent.

Originality/value

Results of this study may help light weight Al/SiC/Gr composites to be used in different industrial applications.

Details

Industrial Lubrication and Tribology, vol. 67 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 March 2019

Praveen Kumar Bannaravuri and Anil Kumar Birru

The purpose of this paper is to determine the use of BLA along with SiC as economical reinforcements to enhance the mechanical behavior of hybrid composite. The purpose of this…

Abstract

Purpose

The purpose of this paper is to determine the use of BLA along with SiC as economical reinforcements to enhance the mechanical behavior of hybrid composite. The purpose of this research is the development of cost-effective aluminum hybrid metal matrix composites.

Design/methodology/approach

The present research work investigation evaluated the mechanical properties of Al-4.5%Cu alloy, Al-4.5Cu/10SiC, Al-4.5Cu/10SiC/2BLA and Al-4.5Cu/10SiC/4BLA composites by the Stir casting method. The fabricated composites were analyzed using optical microscopy (OM), scanning electron microscopy (SEM), and hardness and tensile test.

Findings

The microstructure modification with the addition of reinforcement particles in the matrix alloy and clear interface in between matrix and particles are observed. The density of the composite increased with the addition of SiC and decreased with the addition of BLA in comparison with that of matrix alloy. The hardness and tensile strength of the single-reinforced composite and hybrid composites improved with the addition of reinforcement particles. The strengthening of composites was due to load-bearing capacity of reinforcement particles over the matrix alloy and increased dislocation density of composites materials. The tensile failure mechanism of the composites is reveled with SEM analysis.

Practical implications

The papers reports the development of cost-effective and light weight aluminum hybrid composites with remarkable enhancement in the mechanical and tribological properties with the addition of BLA as economical reinforcement along with SiC.

Originality/value

The density, hardness and tensile values of fabricated aluminium composites were presented in this paper for the use in the engineering applications where the weight and cost are consider as a primary factors.

Details

International Journal of Structural Integrity, vol. 10 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 28 July 2021

Navin Kumar, R.S. Walia and Surjit Angra

The aim of the present study is to find the tribological properties of newly developed polyester-based hybrid glass-jute fibre reinforced plastic composites loaded with different…

59

Abstract

Purpose

The aim of the present study is to find the tribological properties of newly developed polyester-based hybrid glass-jute fibre reinforced plastic composites loaded with different weight per cent of hybrid filler particles were investigated under a dry sliding medium from room temperature to 75°C.

Design/methodology/approach

The study was carried out using a pin-on-disc wear test set-up. The design of experiments was carried out in a controlled way using a central composite design based on response surface methodology to observe the effect of various parameters i.e. sliding velocity, sliding distance, the temperature of counterface and different applied load conditions during dry-sliding.

Findings

The maximum wear resistance was found at 9 Wt% loading of filler, 4 ms-1 sliding velocity, 30 N applied load, 54°C temperature of the counterface and 1,100 m sliding distance condition. Optimum values of hybrid filler loading, sliding velocity, applied load, the temperature of the counterface and sliding distance for the minimum coefficient of friction value and minimum friction force are 9 Wt%, 4 ms−1, 30 N, 54° C, 1,100 m and 12 Wt%, 3 ms−1, 20 N, 59°C and 1,100 m, respectively. The worn surface morphology was studied using scanning electron microscope, for wear dominant mechanisms.

Originality/value

The tribological properties of newly developed polyester-based hybrid glass-jute fibre reinforced plastic composites loaded with different weight % of hybrid filler particles, were investigated under dry sliding medium from room temperature to 75°C has not been attempted yet.

Details

World Journal of Engineering, vol. 19 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 September 2016

Gülcan Toktaş and İmren Öztürk Yılmaz

The purpose of this study is to investigate the tribological properties of society of automotive engineers (SAE) 430B bronze-graphite composite, supplied in the form of machined…

Abstract

Purpose

The purpose of this study is to investigate the tribological properties of society of automotive engineers (SAE) 430B bronze-graphite composite, supplied in the form of machined and graphite embedded, used in sheet forming industry.

Design/methodology/approach

Pin-on-disc wear tests were performed under a constant normal load of 15 N and a sliding velocity of 60 mm/s. Due to the extended usage of Fe-based alloys in forming dies, pin materials were selected as cold work tool steel, gray and ductile irons. The weight losses of the disc (SAE 430B bronze-graphite composite) and the pins (Fe-based alloys) were measured separately under various sliding distances (5,000, 10,000 and 15,000 m). The average friction coefficients and wear tracks were obtained.

Findings

It is concluded that dry sliding behavior of SAE 430B bronze-graphite composite is the worst when operated with GGG-70 ductile iron due to its highest abrasive effect. The high hardness and nodular shape of graphite increased the abrasiveness of ductile iron. The improvement in wear resistance reached up to maximum 90 per cent and the degradation in friction coefficient was about 50 per cent by embedding graphite solids in bronze disc at dry sliding conditions.

Originality/value

Although the machined and graphite embedded bronze composites are indispensable parts of forming dies, there is no scientific knowledge on their dry sliding behavior.

Details

Industrial Lubrication and Tribology, vol. 68 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 12