Search results

1 – 4 of 4
Article
Publication date: 19 November 2018

Javad Riahi Zaniani, Shahab Taghipour Ghahfarokhi, Mehdi Jahangiri and Akbar Alidadi Shamsabadi

This paper, using energy softwares, designed of Iran and optimized a residential villa in Saman city located in Chaharmahal and Bakhtiari Province.

Abstract

Purpose

This paper, using energy softwares, designed of Iran and optimized a residential villa in Saman city located in Chaharmahal and Bakhtiari Province.

Design/methodology/approach

Having used the ideas of Climate Consultant software, the basic designing was conducted by Design Builder Software, and the cooling and heating loads and lighting tools and equipment were calculated. Then, the amount of consuming of heating, cooling and lighting load of the building was optimized through insulation of walls and ceiling, using green roof, double glazing UPVC windows, light intensity sensor and variable refrigerant flow (VRF) system.

Findings

Simulation results for the stated scenarios showed an annual reduction in energy consumption of 21.1, 7.9, 26.41, 27.3 and 72.3 per cent, respectively. Also, by combining all the five scenarios, an optimal state was achieved which, from the results, brought about an annual reduction of 86.9 per cent in the energy consumption.

Originality/value

The authors hope that the results of the current paper could be helpful for designers and engineers in reduction of energy consumption for designing a building in similar climatic conditions.

Details

Journal of Engineering, Design and Technology, vol. 17 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 2 May 2019

Yasaman Yousefi, Mehdi Jahangiri, Akbar Alidadi Shamsabadi and Afshin Raeesi Dehkordi

Reducing energy consumption of a building may have a significant effect on the energy and environmental costs. Nowadays, energy simulations have come to the aid of engineers in…

Abstract

Purpose

Reducing energy consumption of a building may have a significant effect on the energy and environmental costs. Nowadays, energy simulations have come to the aid of engineers in the design and implementation of buildings with a perspective on energy consumption.

Design/methodology/approach

In the current study, the suggested volume of a residential building in the Savadkuh City, Iran, is modeled using Ecotect® software, and the amount of radiation on the sides during various months of the year is studied. Then, using EnergyPlus™ software, climate analyses are performed on the suggested design, and finally, the amount of heating and cooling loads of the building are examined under two difference scenarios of mediator space.

Findings

Results indicated that nearly at all times of the year, both the heating and cooling loads were reduced in the scenario where mediator space had two functions, i.e. as greenhouse and as a space for higher ventilation, compared to the scenario where mediator space did not have a climate role and merely served as an entrance and passageway with rigid dividers.

Originality/value

Nowadays, energy simulations have come to the aid of engineers in the design and implementation of buildings with a perspective on energy consumption. Therefore, in the current study, the suggested volume of a residential building in the Savadkuh City, Iran, is modeled using Ecotect® software, and the amount of radiation on the sides during various months of the year is studied. Then, using EnergyPlus™ software, climate analyses are performed on the suggested design, and finally, the amount of heating and cooling loads of the building are examined under two difference scenarios of mediator space.

Details

Journal of Engineering, Design and Technology , vol. 17 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 11 May 2020

Mehdi Jahangiri, Ahmad Haghani, Shahram Heidarian, Ali Mostafaeipour, Heidar Ali Raiesi and Akbar Alidadi Shamsabadi

Rural areas are one of the effective regions in economy and self-sufficiency field especially in agricultural and livestock section. Planning in the rural section and the effort…

Abstract

Purpose

Rural areas are one of the effective regions in economy and self-sufficiency field especially in agricultural and livestock section. Planning in the rural section and the effort in solving the problems of farmers lead to increase their interest in farming and manufacturing in the villages and decrease their migration to the cities and metropolitans. Therefore, the present study aimed at feasibility of electricity to a rural household in Iran using off-grid solar-based hybrid system.

Design/methodology/approach

In renewable energy projects, a successful evaluation requires suitable criteria so that one can properly analyze the operational behavior of all feasible scenarios. In the present paper, HOMER software has been used for this purpose for a village with no access to electricity grid (Bar Aftab-e Jalaleh, Iran). Due to drastic fluctuation of fossil fuel prices and varied solar radiations in various years because of climate change, sensitivity analysis has been performed using HOMER.

Findings

In the optimum status economically, 70% of needed energy is provided by solar cells at the price 0.792 $/kWh. The comparison between the optimum condition economically and the condition that only use fossil fuels revealed that the return on investment will occur after less than 2 years and have remained profitable over 23 years.

Social implications

The authors hope that the results of this study can be used in planning of the authorities to realize the interests of people in this village.

Originality/value

According to the surveys, despite Iran being the first country in terms of providing solar power to the villages, so far no socio-economic-environmental assessment has been done for a solar cell-based micro-grid in an off-grid mode for a remote village that is deprived of electricity from a national electricity grid. In addition, for the first time in Iran, the effect of the fuel price and solar radiation parameters variability on the performance of system have been investigated.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 4 August 2021

Akbar Alidadi Shamsabadi, Mehdi Jahangiri, Tayebeh Rezaei, Rouhollah Yadollahi Farsani, Ali Seryani and Siavash Hakim

In this study, a solar water heating system along with a seasonal thermal energy storage and a heat pump is designed for a villa with an area of 192 m2 in Tehran, the capital of…

Abstract

Purpose

In this study, a solar water heating system along with a seasonal thermal energy storage and a heat pump is designed for a villa with an area of 192 m2 in Tehran, the capital of Iran.

Design/methodology/approach

According to the material and the area of the residential space, the required heating of the building was calculated manually and then the thermodynamic analysis of the system and simulation was done in MATLAB software. Finally, regarding the waste of system, an efficient solar heating system, providing all the required energy to heat the building, was obtained.

Findings

The surface area of the solar collector is equal to 46 m2, the capacity of the tank is about 2,850 m3, insulation thickness stands at 55 cm and the coefficient of performance in required heat pump is accounted to about 9.02. Also, according to the assessments, the maximum level of received energy by the collector in this system occurs at a maximum temperature of 68ºC.

Originality/value

To the best of the authors’ knowledge, in the present work, for the first time, using mathematical modeling and analyzing of the first and second laws of thermodynamics, as well as using of computational code in MATLAB software environment, the solar-assisted ground source heat pump system is simulated in a residential unit located in Tehran.

Details

Journal of Engineering, Design and Technology , vol. 20 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Access

Year

All dates (4)

Content type

1 – 4 of 4