Search results

1 – 10 of over 5000
Article
Publication date: 10 July 2017

Abdelrahman E.E. Eltoukhy, Felix T.S. Chan and S.H. Chung

The purpose of this paper is twofold: first to carry out a comprehensive literature review for state of the art regarding airline schedule planning and second to identify some new…

2740

Abstract

Purpose

The purpose of this paper is twofold: first to carry out a comprehensive literature review for state of the art regarding airline schedule planning and second to identify some new research directions that might help academic researchers and practitioners.

Design/methodology/approach

The authors mainly focus on the research work appeared in the last three decades. The search process was conducted in database searches using four keywords: “Flight scheduling,” “Fleet assignment,” “Aircraft maintenance routing” (AMR), and “Crew scheduling”. Moreover, the combination of the keywords was used to find the integrated models. Any duplications due to database variety and the articles that were written in non-English language were discarded.

Findings

The authors studied 106 research papers and categorized them into five categories. In addition, according to the model features, subcategories were further identified. Moreover, after discussing up-to-date research work, the authors suggested some future directions in order to contribute to the existing literature.

Research limitations/implications

The presented categories and subcategories were based on the model characteristics rather than the model formulation and solution methodology that are commonly used in the literature. One advantage of this classification is that it might help scholars to deeply understand the main variation between the models. On the other hand, identifying future research opportunities should help academic researchers and practitioners to develop new models and improve the performance of the existing models.

Practical implications

This study proposed some considerations in order to enhance the efficiency of the schedule planning process practically, for example, using the dynamic Stackelberg game strategy for market competition in flight scheduling, considering re-fleeting mechanism under heterogeneous fleet for fleet assignment, and considering the stochastic departure and arrival times for AMR.

Originality/value

In the literature, all the review papers focused only on one category of the five categories. Then, this category was classified according to the model formulation and solution methodology. However, in this work, the authors attempted to propose a comprehensive review for all categories for the first time and develop new classifications for each category. The proposed classifications are hence novel and significant.

Details

Industrial Management & Data Systems, vol. 117 no. 6
Type: Research Article
ISSN: 0263-5577

Keywords

Open Access
Article
Publication date: 9 July 2021

Ben Vinod

The static world of flight scheduling where schedules rarely change once published is becoming more responsive with schedule change updates leading up to the departure date due to…

10086

Abstract

Purpose

The static world of flight scheduling where schedules rarely change once published is becoming more responsive with schedule change updates leading up to the departure date due to demand volatility and unpredictable demand patterns. Innovation in cash flow generation will take center stage to operate the business in these uncertain times. Forecasting demand for future flights is a challenge since historical demand patterns are not meaningful which requires a new adaptive robust revenue management approach that monitors key metrics, detects anomalies and quickly takes corrective action when performance targets cannot be achieved.

Design/methodology/approach

The novel COVID-19 pandemic decimated the travel industry in 2020 and continues to plague us with no end in sight. With the steep drop in revenues, airlines need to adapt to a new marketing planning process of scheduling, pricing and revenue management that is more nimble to adapt quickly to changing market conditions. This new approach will continue to be relevant in a post-COVID-19 world during and after economic recovery.

Findings

A methodology for airline revenue planning: scheduling, airline pricing and revenue management, has been proposed that will also work in a post-COVID-19 era.

Research limitations/implications

The limitation of the proposed model is that it needs to be applied in practice to determine the true benefits of this novel approach to airline revenue planning.

Practical implications

Flight scheduling will rely more on clean sheet scheduling, schedule revisions and close in refleeting to better match demand to supply. The office of the chief financial officer will have a permanent task force to monitor cash flow and come up with innovative solutions to generate cash flow for liquidity. Adaptive robust revenue management workflows will be integrated into traditional revenue management workflows in the future for competitive advantage.

Social implications

In a post-COVID-19 world it is anticipated that airline business processes will transform to be nimbler and more proactive in making timely decisions at a greater velocity.

Originality/value

The approach to airline revenue planning for scheduling, pricing and revenue management is a new business process that does not exist today at scale in the airline industry.

Article
Publication date: 24 August 2022

Amir Khiabani, Alireza Rashidi Komijan, Vahidreza Ghezavati and Hadi Mohammadi Bidhandi

Airline scheduling is an extremely complex process. Moreover, disruption in a single flight may damage the entire schedule tremendously. Using an efficient recovery scheduling

Abstract

Purpose

Airline scheduling is an extremely complex process. Moreover, disruption in a single flight may damage the entire schedule tremendously. Using an efficient recovery scheduling strategy is vital for a commercial airline. The purpose of this paper is to present an integrated aircraft and crew recovery plans to reduce delay and prevent delay propagation on airline schedule with the minimum cost.

Design/methodology/approach

A mixed-integer linear programming model is proposed to formulate an integrated aircraft and crew recovery problem. The main contribution of the model is that recovery model is formulated based on individual flight legs instead of strings. This leads to a more accurate schedule and better solution. Also, some important issues such as crew swapping, reassignment of aircraft to other flights as well as ground and sit time requirements are considered in the model. Benders’ decomposition approach is used to solve the proposed model.

Findings

The model performance is also tested by a case including 227 flights, 64 crew, 56 aircraft and 40 different airports from American Airlines data for a 24-h horizon. The solution achieved the minimum cost value in 35 min. The results show that the model has a great performance to recover the entire schedule when disruption happens for random flights and propagation delay is successfully limited.

Originality/value

The authors confirm that this is an original paper and has not been published or under consideration in any other journal.

Details

Journal of Modelling in Management, vol. 18 no. 6
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 14 September 2015

S.H. Chung, Ying Kei Tse and T.M. Choi

The purpose of this paper is to carry out a comprehensive review for state-of-the-art works in disruption risk management of express logistics mainly supported by…

2067

Abstract

Purpose

The purpose of this paper is to carry out a comprehensive review for state-of-the-art works in disruption risk management of express logistics mainly supported by air-transportation. The authors aim to suggest some new research directions and insights for express logistics practitioners to develop more robust planning in air-transportation.

Design/methodology/approach

The authors mainly confined the research to papers published over the last two decades. The search process was conducted in two dimensions: horizontal and vertical. In the horizontal dimension, attention was paid to the evolution of disruption management across the timeline. In the vertical dimension, different foci and strategies of disruption management are employed to distinguish each article. Three keywords were used in the full text query: “Disruption management”, “Air transportation”, and “Airline Operations” in all database searches listed above. Duplications due to database overlap, articles other than those from academic journals, and papers in languages other than English were discarded.

Findings

A total of 98 articles were studied. The authors categorized the papers into two broad categories: Reactive Recovery, and Proactive Planning. In addition, based on the problem characteristics and their application scenarios, a total of 11 sub-categories in reactive recovery and nine sub-categories in proactive planning were further identified. From the analysis, the authors identified some new categories in the air-transportation recovery. In addition, by analyzing the papers in robust planning, according to the problem characteristics and the state-of-the-art research in recovery problems, the authors proposed four new research directions to enhance the reliability and robustness of air-transportation express logistics.

Research limitations/implications

This study provided a comprehensive and feasible taxonomy of disruption risk management. The classification scheme was based on the problem characteristics and the application scenarios, rather than the algorithms. One advantage of this scheme is that it enables an in-depth classification of the problem, that is, sub-categories of each class can be revealed, which provides a much wider and clearer horizon to the scientific progress in this area. This helps researchers to reveal the problem’s nature and to identify the future directions more systematically. The suggestions for future research directions also point out some critical research gaps and opportunities.

Practical implications

This study summarized various reasons which account for the disruption in air-transportation. In addition, the authors suggested various considerations for express logistics practitioners to enhance logistics network reliability and efficiency.

Originality/value

There are various classification schemes in the literature to categorize disruption management. Using different algorithms (e.g. exact algorithm, heuristics, meta-heuristics) and distinct characteristics of the problem elements (e.g. aircraft, crew, passengers, etc.) are the most common schemes in previous efforts to produce a disruption management classification scheme. However, the authors herein attempted to focus on the problem nature and the application perspective of disruption management. The classification scheme is hence novel and significant.

Details

Industrial Management & Data Systems, vol. 115 no. 8
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 6 September 2021

Bahareh Shafipour-Omrani, Alireza Rashidi Komijan, Seyed Jafar Sadjadi, Kaveh Khalili-Damghani and Vahidreza Ghezavati

One of the main advantages of the proposed model is that it is flexible to generate n-day pairings simultaneously. It means that, despite previous researches, one-day to n-day…

Abstract

Purpose

One of the main advantages of the proposed model is that it is flexible to generate n-day pairings simultaneously. It means that, despite previous researches, one-day to n-day pairings can be generated in a single model. The flexibility in generating parings causes that the proposed model leads to better solutions compared to existing models. Another advantage of the model is minimizing the risk of COVID-19 by limitation of daily flights as well as elapsed time minimization. As airports are among high risk places in COVID-19 pandemic, minimization of infection risk is considered in this model for the first time. Genetic algorithm is used as the solution approach, and its efficiency is compared to GAMS in small and medium-size problems.

Design/methodology/approach

One of the most complex issues in airlines is crew scheduling problem which is divided into two subproblems: crew pairing problem (CPP) and crew rostering problem (CRP). Generating crew pairings is a tremendous and exhausting task as millions of pairings may be generated for an airline. Moreover, crew cost has the largest share in total cost of airlines after fuel cost. As a result, crew scheduling with the aim of cost minimization is one of the most important issues in airlines. In this paper, a new bi-objective mixed integer programming model is proposed to generate pairings in such a way that deadhead cost, crew cost and the risk of COVID-19 are minimized.

Findings

The proposed model is applied for domestic flights of Iran Air airline. The results of the study indicate that genetic algorithm solutions have only 0.414 and 0.380 gap on average to optimum values of the first and the second objective functions, respectively. Due to the flexibility of the proposed model, it improves solutions resulted from existing models with fixed-duty pairings. Crew cost is decreased by 12.82, 24.72, 4.05 and 14.86% compared to one-duty to four-duty models. In detail, crew salary is improved by 12.85, 24.64, 4.07 and 14.91% and deadhead cost is decreased by 11.87, 26.98, 3.27, and 13.35% compared to one-duty to four-duty models, respectively.

Originality/value

The authors confirm that it is an original paper, has not been published elsewhere and is not currently under consideration of any other journal.

Details

Kybernetes, vol. 51 no. 12
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 10 June 2021

Álvaro Rodríguez-Sanz, Rosa Maria M. Arnaldo Valdes, Javier A. Pérez-Castán, Pablo López Cózar and Victor Fernando Gómez Comendador

Airports are limited in terms of capacity. Particularly, runways can only accommodate a certain number of movements (arrivals and departures) while ensuring safety and determined…

203

Abstract

Purpose

Airports are limited in terms of capacity. Particularly, runways can only accommodate a certain number of movements (arrivals and departures) while ensuring safety and determined operational requirements. In such a constrained operating environment, any reduction in system capacity results in major delays with significant costs for airlines and passengers. Therefore, the efficient operation of airports is a critical cornerstone for demand and delay management of the whole air transportation system. Runway scheduling deals with the sequencing of arriving and departing aircraft at airports such that a predefined objective is optimized subject to several operational constraints, like the dependency of separation on the leading and trailing aircraft type or the runway occupancy time. This study aims to develop a model that acts as a tactical runway scheduling methodology for reducing delays while managing runway usage.

Design/methodology/approach

By considering real airport performance data with scheduled and actual movements, as well as arrival/departure delays, this study presents a robust model together with an optimization algorithm, which incorporates the knowledge of uncertainty into the tactical operational step. The approach transforms the planning problem into an assignment problem with side constraints. The coupled landing/take-off problem is solved to optimality by exploiting a time-indexed (0, 1) formulation for the problem. The Binary Integer Linear Programming approach allows to include multi-criteria and multi-constraints levels and, even with some major simplifications, provides fewer sequence changes and target time updates, when compared to the usual approach in which the plan is simply updated in case of infeasibility. Thus, the use of robust optimization leads to a protection against tactical uncertainties, reduces delays and achieves more stable operations.

Findings

This model has been validated with real data from a large international European airport in different traffic scenarios. Results are compared to the actual sequencing of flights and show that the algorithm can significantly contribute to the reduction of delay, while adhering as much as possible to the operative procedures and constraints, and to the objectives of the airport stakeholders. Computational experiments performed on the case study illustrate the benefits of this arrival/departure integrated approach: the proposed algorithm significantly reduces weighted aircraft delay and computes efficient runway schedule solutions within a few seconds and with little computational effort. It can be adopted as a decision-making tool in the tactical stage. Furthermore, this study presents operational insights regarding demand and delay management based on the results of this work.

Originality/value

Scheduling arrivals and departures at runways is a complex problem that needs to address diverse and often competing considerations among involved flights. In the context of the Airport Collaborative Decision Making programme, airport operators and air navigation service providers require arrival and departure management tools that improve aircraft flows at airports. Airport runway optimization, as the main element that combines airside and groundside operations, is an ongoing challenge for air traffic management.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Abstract

Details

Handbook of Transport Systems and Traffic Control
Type: Book
ISBN: 978-1-61-583246-0

Article
Publication date: 23 May 2023

Massoud Bazargan and Ilkay Orhan

The airlines cancel their flights frequently because of factors that they do not have any control over. Spare aircraft can potentially address some of the issues caused by…

Abstract

Purpose

The airlines cancel their flights frequently because of factors that they do not have any control over. Spare aircraft can potentially address some of the issues caused by cancelled flights. This paper aims to offer an exploratory study into the financial and operational viabilities of spare aircraft for airlines.

Design/methodology/approach

Mathematical models are proposed to evaluate the financial and operational metrics under different scenarios. The models are applied to Delta, Spirit and Southwest Airlines with different business models. All data are extracted from US Bureau of Transport Statistics, Cirium Diio Mi and CAPA databases. The IBM Cplex solver was used to execute the binary linear program models.

Findings

The research revealed that factors such as airline network size, hub and spoke structure and average weekly flight cancellations are crucial in establishing the need for spare aircraft. For the number of weekly cancellations, there exist break-even values that reasonably justify spare aircraft.

Practical implications

Models can be customized and applied to other modes of transportations.

Originality/value

This study is the first to consider the use of spare aircraft in airlines from both financial and operational perspectives within the scope of the mathematical model. The analyses identify financial break-even points for a number of spare aircraft and their home base locations for three airlines. Operational utilization of spare aircraft is studied and contrasted with financial metrics.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Abstract

Details

Strategic Airport Planning
Type: Book
ISBN: 978-0-58-547441-0

Abstract

Details

Handbook of Transport Systems and Traffic Control
Type: Book
ISBN: 978-1-61-583246-0

1 – 10 of over 5000