Search results

1 – 10 of 21
Article
Publication date: 7 June 2022

Sangeetha Yempally, Sanjay Kumar Singh and S. Velliangiri

Selecting and using the same health monitoring devices for a particular problem is a tedious task. This paper aims to provide a comprehensive review of 40 research papers giving…

Abstract

Purpose

Selecting and using the same health monitoring devices for a particular problem is a tedious task. This paper aims to provide a comprehensive review of 40 research papers giving the Smart health monitoring system using Internet of things (IoT) and Deep learning.

Design/methodology/approach

Health Monitoring Systems play a significant role in the healthcare sector. The development and testing of health monitoring devices using IoT and deep learning dominate the healthcare sector.

Findings

In addition, the detailed conversation and investigation are finished by techniques and development framework. Authors have identified the research gap and presented future research directions in IoT, edge computing and deep learning.

Originality/value

The gathered research articles are examined, and the gaps and issues that the current research papers confront are discussed. In addition, based on various research gaps, this assessment proposes the primary future scope for deep learning and IoT health monitoring model.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 15 August 2023

Zul-Atfi Ismail

At the beginning of the Corona Virus Disease 2019 (COVID-19) pandemic, a digitalized construction environments surfaced in the heating, ventilation and air conditioning (HVAC…

Abstract

Purpose

At the beginning of the Corona Virus Disease 2019 (COVID-19) pandemic, a digitalized construction environments surfaced in the heating, ventilation and air conditioning (HVAC) systems in the form of a modern delivery system called demand controlled ventilation (DCV). Demand controlled ventilation has the potential to solve the building ventilation's biggest problem of managing indoor air quality (IAQ) for controlling COVID-19 transmission in indoor environments. However, the improper evaluation and information management of infection prevention on dense crowd activities such as measurement errors and volatile organic compound (VOC) generation failure rates, is fragmented so the aim of this research is to integrate this and explore potentials with machine learning algorithms (MLAs).

Design/methodology/approach

The method used is a thorough systematic literature review (SLR) approach. The results of this research consist of a detailed description of the DCV system and digitalized construction process of its IAQ elements.

Findings

The discussion revealed that DCV has a potential for being further integrated by perceiving it as a MLAs and hereby enabling the management of IAQ level from the perspective of health risk function mechanism (i.e. VOC and CO2) for maintaining a comfortable thermal environment and save energy of public and private buildings (PPBs). The appropriate MLA can also be selected in different occupancy patterns for seasonal variations, ventilation behavior, building type and locations, as well as current indoor air pollution control strategies. Furthermore, the conceptual framework showed that MLA application such as algorithm design/Model Predictive Control (MPC) integration can alleviate the high spread limitation of COVID-19 in the indoor environment.

Originality/value

Finally, the research concludes that a large unexploited potential within integration and innovation is recognized in the DCV system and MLAs which can be improved to optimize level of IAQ from the perspective of health throughout the building sector DCV process systems. The requirements of CO2 based DCV along with VOC concentrations monitoring practice should be taken into consideration through further research and experience with adaption and implementation from the ventilation control initial stage of the DCV process.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 7 February 2024

Md Atiqur Rahman

The research focused on analysing a unique type of heat exchanger that uses swirling air flow over heated tubes. This heat exchanger includes a round baffle plate with holes and…

Abstract

Purpose

The research focused on analysing a unique type of heat exchanger that uses swirling air flow over heated tubes. This heat exchanger includes a round baffle plate with holes and opposite-oriented trapezoidal air deflectors attached at different angles. The deflectors are spaced at various distances, and the tubes are arranged in a circular pattern while maintaining a constant heat flux.

Design/methodology/approach

This setup is housed inside a circular duct with airflow in the longitudinal direction. The study examined the impact of different inclination angles and pitch ratios on the performance of the heat exchanger within a specific range of Reynolds numbers.

Findings

The findings revealed that the angle of inclination significantly affected the flow velocity, with higher angles resulting in increased velocity. The heat transfer performance was best at lower inclination angles and pitch ratios. Flow resistance decreased with increasing angle of inclination and pitch ratio.

Originality/value

The average thermal enhancement factor decreased with higher inclination angles, with the maximum value observed as 0.94 at a pitch ratio of 1 at an angle of 30°.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 August 2023

Erik Velasco and Elvagris Segovia

Waiting for a bus may represent a period of intense exposure to traffic particles in hot and noisy conditions in the street. To lessen the particle load and tackle heat in bus…

Abstract

Purpose

Waiting for a bus may represent a period of intense exposure to traffic particles in hot and noisy conditions in the street. To lessen the particle load and tackle heat in bus stops a shelter was equipped with an electrostatic precipitator and a three-step adiabatic cooling system capable of dynamically adjust its operation according to actual conditions. This study evaluates the effectiveness of the Airbitat Oasis Smart Bus Stop, as the shelter was called, to provide clean and cool air.

Design/methodology/approach

The particle exposure experienced in this innovative shelter was contrasted with that in a conventional shelter located right next to it. Mass concentrations of fine particles and black carbon, and particle number concentration (as a proxy of ultrafine particles) were simultaneously measured in both shelters. Air temperature, relative humidity and noise level were also measured.

Findings

The new shelter did not perform as expected. It only slightly reduced the abundance of fine particles (−6.5%), but not of ultrafine particles and black carbon. Similarly, it reduced air temperature (−1 °C), but increased relative humidity (3%). Its operation did not generate additional noise.

Practical implications

The shelter's poor performance was presumably due to design flaws induced by a lack of knowledge on traffic particles and fluid dynamics in urban environments. This is an example where harnessing technology without understanding the problem to solve does not work.

Originality/value

It is uncommon to come across case studies like this one in which the performance and effectiveness of urban infrastructure can be assessed under real-life service settings.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 1 September 2023

Dinçer Aydın and Şule Yılmaz Erten

The buildings should be designed by respecting the environmental and climatic conditions they are in and their orientation. Then, the characteristics of the building envelope (BE…

159

Abstract

Purpose

The buildings should be designed by respecting the environmental and climatic conditions they are in and their orientation. Then, the characteristics of the building envelope (BE) play an important role in building energy consumption and user comfort. In fact, the type and material of glazing is one of the crucial parameters for BE. The transparency ratio of BE also determines the façade performance. The aim of this study is to analyze the different renovation scenarios for BE with high transparency of an educational building (EB) in hot summer weather to obtain indoor thermal comfort (ITC) for users.

Design/methodology/approach

The methodology includes thorough measurement of existing ITC using TESTO-440 and simulation of each retrofit scenario using DesignBuilder building energy modeling (BEM) simulation software with Energyplus to determine optimal thermal comfort. Since the study focuses on the impact of the transparent BE on summer ITC, four main scenarios, naturally ventilated (NV) façade, film-coated glass façade, replacement of glazing with opaque units, sun-controlled façade with overhang and solar shading, were simulated. The results were analyzed comparatively on both performance and cost to find the best renovation solutions.

Findings

A total of 7 different renovation scenarios were tested. Simulation results show that passive systems such as NV have limited contribution to indoor air temperature (IAT) improvement, achieving only a 4 °C reduction while offering the lowest cost. A film coating resulted in a reduction of 3–6 °C, but these applications have the highest cost and least impact on ITC. It was found that exterior coating leads to better results in film coating. Preventing and limiting the increase in IAT was achieved by reducing the transparency ratio of BE. The best results were obtained in these scenarios, and it was possible to reduce IAT by more than 10 °C. The best performance/cost value were also obtained by decreasing transparency ratio of roof and sun control.

Research limitations/implications

Since the high transparency ratio has a negative impact on summer comfort, especially in hot climate zones, summer ITC was prioritized in the renovation solutions for the case building.

Originality/value

The study’s findings present a range of solutions for improving the ITC of highly transparent buildings. The solutions can help building managers see the differences in renovation costs and their impacts on ITC to decrease the cooling load of the existing buildings.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 30 June 2023

Aishwarya Narang, Ravi Kumar, Amit Kumar Dhiman, Ravi Shankar Pandey and Pavan Kumar Sharma

This study describes a series of experiments investigating the upper hot layer temperature profile in a confined space under different ventilation conditions for…

Abstract

Purpose

This study describes a series of experiments investigating the upper hot layer temperature profile in a confined space under different ventilation conditions for porosity-controlled wood crib fires for pre-flashover conditions.

Design/methodology/approach

Full-scale compartment (4 m × 4 m × 4 m) experiments were carried out for four-door openings, i.e. 100%, 75%, 50% and 25% of the total vent area (2 m × 1 m) with the wood crib as a fuel load. The temperature of the upper hot smoke layers of the compartment was recorded with the help of four layers of thermocouples for varying vent areas.

Findings

The effect of ventilation on the properties, i.e. mass loss rate, enclosure temperature, heat release rate and carbon monoxide (CO) gas concentration, has been measured and analyzed. The effect of ventilation on heat flux and flame temperature has also been studied. Compartment gas temperature has been examined by five wood crib burning stages: Ignition, growth, steady burning, recess and collapse.

Originality/value

Findings demonstrate that the influence of vent openings varies for the burning parameters and upper layer temperature of the compartment. The current results are beneficial in analyzing thermal risks concerning compartment fire and fire safety engineering projects.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 May 2022

Charlie Hopkin and Simon Lay

The proposed use of unlatched, reverse swing flappy doors is becoming widespread in the design of residential common corridor smoke control systems. This article explores the…

Abstract

Purpose

The proposed use of unlatched, reverse swing flappy doors is becoming widespread in the design of residential common corridor smoke control systems. This article explores the conceptual arguments for and against the use of these systems.

Design/methodology/approach

This article relies on industry experience, with reference to relevant building design practices, standards and research literature, to categorise arguments. These are collated into four common areas of concern relating to compartmentation, reliability, depressurisation and modelling practices. A final comparison is made between different common corridor smoke control system types for these four areas.

Findings

The article highlights several concerns around the use of flappy door systems, including the enforced breaches in stair compartmentation, uncertainties around system reliability, the reliance on door closers as a single point of failure, the impact of day-to-day building use on the system performance and the false confidence that modelling assessments can provide in demonstrating adequacy. The article concludes in suggesting that alternative smoke control options be considered in place of flappy door systems.

Originality/value

Discussion on the use of flappy door smoke control systems has been ongoing within the fire engineering community for several years, but there is limited public literature available on the topic. By collating the common arguments relating to these systems into a single article, a better understanding of their benefits and pitfalls has been provided for consideration by building design and construction professionals.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 27 September 2023

Md Atiqur Rahman

The purpose of this experimental research was to examine a novel axial heat exchanger featuring swirling air movement over heated tubes. This apparatus is designed with perforated…

26

Abstract

Purpose

The purpose of this experimental research was to examine a novel axial heat exchanger featuring swirling air movement over heated tubes. This apparatus is designed with perforated circular baffle plates complemented by rectangular air deflectors operating at different inclination angles. The tubes were arranged in a consistent layout parallel to the longitudinal airflow. The deflector’s heightened air-side turbulence initiates the frenzied motion, escalating the surface heat transfer rate.

Design/methodology/approach

The tubes maintained a constant heat flux condition over the surface. In each baffle plate, eight deflectors with identical inclination angles were devised in a reverse position, forming a rotation of air inside a circular duct that held tubes (carrying hot water) which elevated air-side turbulence, thereby enhancing the rate of heat transference on the surface. The baffle plates were equally situated from each other at changing pitch ratios. The Reynolds quantity was preserved in the scope of 16,000–30,000. The performance of the heat exchanger considering pitch ratios and inclination angles was examined.

Findings

The research indicates that when examined under similar conditions, an exchanger with a deflector baffle plate shows a strong dependence on the pitch ratio and inclination angle with a mean rise of 0.19 times in thermal enhancement factor at an inclination angle of 30° and a pitch ratio of 1.2 contrasted with an exchanger with segmental baffle plates.

Originality/value

The result shows the dependence of pitch ratio, Reynolds number and inclination on the heat transfer and friction factor rate.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 April 2024

Fateme Akhlaghinezhad, Amir Tabadkani, Hadi Bagheri Sabzevar, Nastaran Seyed Shafavi and Arman Nikkhah Dehnavi

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to…

Abstract

Purpose

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to simulate occupant behavior has emerged as a potential solution. This study seeks to analyze the performance of free-running households by examining adaptive thermal comfort and CO2 concentration, both crucial variables in indoor air quality. The investigation of indoor environment dynamics caused by the occupants' behavior, especially after the COVID-19 pandemic, became increasingly important. Specifically, it investigates 13 distinct window and shading control strategies in courtyard houses to identify the factors that prompt occupants to interact with shading and windows and determine which control approach effectively minimizes the performance gap.

Design/methodology/approach

This paper compares commonly used deterministic and probabilistic control functions and their effects on occupant comfort and indoor air quality in four zones surrounding a courtyard. The zones are differentiated by windows facing the courtyard. The study utilizes the energy management system (EMS) functionality of EnergyPlus within an algorithmic interface called Ladybug Tools. By modifying geometrical dimensions, orientation, window-to-wall ratio (WWR) and window operable fraction, a total of 465 cases are analyzed to identify effective control scenarios. According to the literature, these factors were selected because of their potential significant impact on occupants’ thermal comfort and indoor air quality, in addition to the natural ventilation flow rate. Additionally, the Random Forest algorithm is employed to estimate the individual impact of each control scenario on indoor thermal comfort and air quality metrics, including operative temperature and CO2 concentration.

Findings

The findings of the study confirmed that both deterministic and probabilistic window control algorithms were effective in reducing thermal discomfort hours, with reductions of 56.7 and 41.1%, respectively. Deterministic shading controls resulted in a reduction of 18.5%. Implementing the window control strategies led to a significant decrease of 87.8% in indoor CO2 concentration. The sensitivity analysis revealed that outdoor temperature exhibited the strongest positive correlation with indoor operative temperature while showing a negative correlation with indoor CO2 concentration. Furthermore, zone orientation and length were identified as the most influential design variables in achieving the desired performance outcomes.

Research limitations/implications

It’s important to acknowledge the limitations of this study. Firstly, the potential impact of air circulation through the central zone was not considered. Secondly, the investigated control scenarios may have different impacts on air-conditioned buildings, especially when considering energy consumption. Thirdly, the study heavily relied on simulation tools and algorithms, which may limit its real-world applicability. The accuracy of the simulations depends on the quality of the input data and the assumptions made in the models. Fourthly, the case study is hypothetical in nature to be able to compare different control scenarios and their implications. Lastly, the comparative analysis was limited to a specific climate, which may restrict the generalizability of the findings in different climates.

Originality/value

Occupant behavior represents a significant source of uncertainty, particularly during the early stages of design. This study aims to offer a comparative analysis of various deterministic and probabilistic control scenarios that are based on occupant behavior. The study evaluates the effectiveness and validity of these proposed control scenarios, providing valuable insights for design decision-making.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 10 of 21