Search results

1 – 10 of over 2000
Article
Publication date: 24 August 2022

Amir Khiabani, Alireza Rashidi Komijan, Vahidreza Ghezavati and Hadi Mohammadi Bidhandi

Airline scheduling is an extremely complex process. Moreover, disruption in a single flight may damage the entire schedule tremendously. Using an efficient recovery scheduling…

Abstract

Purpose

Airline scheduling is an extremely complex process. Moreover, disruption in a single flight may damage the entire schedule tremendously. Using an efficient recovery scheduling strategy is vital for a commercial airline. The purpose of this paper is to present an integrated aircraft and crew recovery plans to reduce delay and prevent delay propagation on airline schedule with the minimum cost.

Design/methodology/approach

A mixed-integer linear programming model is proposed to formulate an integrated aircraft and crew recovery problem. The main contribution of the model is that recovery model is formulated based on individual flight legs instead of strings. This leads to a more accurate schedule and better solution. Also, some important issues such as crew swapping, reassignment of aircraft to other flights as well as ground and sit time requirements are considered in the model. Benders’ decomposition approach is used to solve the proposed model.

Findings

The model performance is also tested by a case including 227 flights, 64 crew, 56 aircraft and 40 different airports from American Airlines data for a 24-h horizon. The solution achieved the minimum cost value in 35 min. The results show that the model has a great performance to recover the entire schedule when disruption happens for random flights and propagation delay is successfully limited.

Originality/value

The authors confirm that this is an original paper and has not been published or under consideration in any other journal.

Details

Journal of Modelling in Management, vol. 18 no. 6
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 14 September 2015

S.H. Chung, Ying Kei Tse and T.M. Choi

The purpose of this paper is to carry out a comprehensive review for state-of-the-art works in disruption risk management of express logistics mainly supported by…

2067

Abstract

Purpose

The purpose of this paper is to carry out a comprehensive review for state-of-the-art works in disruption risk management of express logistics mainly supported by air-transportation. The authors aim to suggest some new research directions and insights for express logistics practitioners to develop more robust planning in air-transportation.

Design/methodology/approach

The authors mainly confined the research to papers published over the last two decades. The search process was conducted in two dimensions: horizontal and vertical. In the horizontal dimension, attention was paid to the evolution of disruption management across the timeline. In the vertical dimension, different foci and strategies of disruption management are employed to distinguish each article. Three keywords were used in the full text query: “Disruption management”, “Air transportation”, and “Airline Operations” in all database searches listed above. Duplications due to database overlap, articles other than those from academic journals, and papers in languages other than English were discarded.

Findings

A total of 98 articles were studied. The authors categorized the papers into two broad categories: Reactive Recovery, and Proactive Planning. In addition, based on the problem characteristics and their application scenarios, a total of 11 sub-categories in reactive recovery and nine sub-categories in proactive planning were further identified. From the analysis, the authors identified some new categories in the air-transportation recovery. In addition, by analyzing the papers in robust planning, according to the problem characteristics and the state-of-the-art research in recovery problems, the authors proposed four new research directions to enhance the reliability and robustness of air-transportation express logistics.

Research limitations/implications

This study provided a comprehensive and feasible taxonomy of disruption risk management. The classification scheme was based on the problem characteristics and the application scenarios, rather than the algorithms. One advantage of this scheme is that it enables an in-depth classification of the problem, that is, sub-categories of each class can be revealed, which provides a much wider and clearer horizon to the scientific progress in this area. This helps researchers to reveal the problem’s nature and to identify the future directions more systematically. The suggestions for future research directions also point out some critical research gaps and opportunities.

Practical implications

This study summarized various reasons which account for the disruption in air-transportation. In addition, the authors suggested various considerations for express logistics practitioners to enhance logistics network reliability and efficiency.

Originality/value

There are various classification schemes in the literature to categorize disruption management. Using different algorithms (e.g. exact algorithm, heuristics, meta-heuristics) and distinct characteristics of the problem elements (e.g. aircraft, crew, passengers, etc.) are the most common schemes in previous efforts to produce a disruption management classification scheme. However, the authors herein attempted to focus on the problem nature and the application perspective of disruption management. The classification scheme is hence novel and significant.

Details

Industrial Management & Data Systems, vol. 115 no. 8
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 1 November 1958

A.D. Young and S. Neumark

Detailed step by step calculations have been made of the recovery with fixed elevator from a high speed dive for three different aircraft; for these calculations measured wind…

39

Abstract

Detailed step by step calculations have been made of the recovery with fixed elevator from a high speed dive for three different aircraft; for these calculations measured wind tunnel data were used. The aircraft differed markedly in the behaviour of their restoring margin Km=− (∂Cm/∂CL)M. The calculations demonstrated in all cases an initial, rapidly damped, short period oscillatory phase, a nearly constant value of ρV2 throughout the recovery, and subsequent to the initial oscillatory phase Cm was small. These results enable three different approximate methods for calculating the recovery after the initial oscillatory phase to be developed. The first is applicable where only a rough estimate of the recovery characteristics is required and the value of Km is about 0·3 or greater; it is very simple and quick to apply. The second is only a little more complicated and is found to give reliable results where Km is of the order of 0·1 or greater. The third method is the most complicated of the three but is still fairly simple and quick and it can be expected to give reliable results in all cases except where Km is appreciably negative for a considerable portion of the recovery. In the latter case, however, the aircraft is liable to be unstable and detailed step by step calculations or simulator studies are essential for an accurate assessment of the recovery. The main features of the initial oscillatory phase are satisfactorily predicted by Gates' manoeuvrability theory if the restoring margin Km is adequately positive (that is, greater than about 0·005) and if this factor docs not vary rapidly with Mach number at that stage. No detailed investigation has been made for aircraft diving at supersonic speeds; however, it seems likely that the general results of this investigation will still apply in such cases.

Details

Aircraft Engineering and Aerospace Technology, vol. 30 no. 11
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 10 July 2020

Bilal Malik, Jehanzeb Masud and Suhail Akhtar

This paper aims to present a literature review on analytical research on the prediction of aircraft spin and recovery characteristics, as it progressed from the early years of…

Abstract

Purpose

This paper aims to present a literature review on analytical research on the prediction of aircraft spin and recovery characteristics, as it progressed from the early years of aviation to current state of the art spin technologies.

Design/methodology/approach

Aerodynamic model development approaches that have been generally used in past spin studies are presented. Past contributions in application of these analytical techniques to predict spin and recovery characteristics on various fighters, general aviation and airliners are discussed, thus providing useful reference for researchers embarking aircraft spin research. An overview of the development of spin prevention and spin recovery technologies to mitigate stall/spin susceptibility is presented.

Findings

The challenges associated with the presented techniques that prompt possible future research directions are discussed.

Originality/value

Despite considerable progress in the recent years, no comprehensive review on the analytical and computational research techniques to predict aircraft post-stall/ spin characteristics has been undertaken in the recent years.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 June 2022

Xiaopeng Liu

To reduce the time of flight rescheduling, reduce the total delay cost of all flights to a minimum and put forward more references for passengers to take flights, this paper aims…

Abstract

Purpose

To reduce the time of flight rescheduling, reduce the total delay cost of all flights to a minimum and put forward more references for passengers to take flights, this paper aims to mainly study the recovery of flights affected by snow disaster within the minimum delay time.

Design/methodology/approach

The temporal and spatial network flight recovery model is used to optimize all flights of various types of aircraft, and the adjusted flight schedule based on minute delay time is obtained. In addition, for passenger travel flights, the impact of passenger delay cost on the total delay time is minimized as an objective function to calculate the passenger delay cost.

Findings

In this paper, the actual departure time of aircraft is sorted in ascending order. Up to five planes can take off from the runway every 5 min, and the 10-min decision interval is successively delayed. The actual arrival time is sorted by the same method and the sequential delay is calculated to obtain the adjusted flight schedule. As a result, it takes less time to reschedule flights.

Originality/value

In this paper, heuristic algorithm is used to adjust the schedule of delayed flights flexibly, which is convenient for manual modification. This decision method has good robustness and can partially adjust the interrupted flights without affecting other scheduled flights while maintaining the stable operation of the whole plan, greatly improving the efficiency of civil aviation operations and reducing the impact of flight delays.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 September 2021

Bilal Malik, Jehanzeb Masud and Suhail Akhtar

This paper aims to provide a detailed review of the experimental research on the prediction of aircraft spin and recovery characteristics using dynamically scaled aircraft models.

Abstract

Purpose

This paper aims to provide a detailed review of the experimental research on the prediction of aircraft spin and recovery characteristics using dynamically scaled aircraft models.

Design/methodology/approach

The paper organizes experimental techniques to predict aircraft spin and recovery characteristics into three broad categories: dynamic free-flight tests, dynamic force tests and a relatively novel technique called wind tunnel based virtual flight testing.

Findings

After a thorough review, usefulness, limitations and open problems in the presented techniques are highlighted to provide a useful reference to researchers. The area of application of each technique within the research scope of aircraft spin is also presented.

Originality/value

Previous reviews on the prediction of aircraft spin and recovery characteristics were published many years ago and also have confined scope as they address particular spin technologies. This paper attempts to provide a comprehensive review on the subject and fill the information void regarding the state of the art aircraft spin technologies.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 October 2018

Kamil Krasuski

The purpose of this paper is based on implementation of Global Navigation Satellite System (GNSS) technique in civil aviation for recovery of aircraft position using Single Point…

Abstract

Purpose

The purpose of this paper is based on implementation of Global Navigation Satellite System (GNSS) technique in civil aviation for recovery of aircraft position using Single Point Positioning (SPP) method in kinematic mode.

Design/methodology/approach

The aircraft coordinates in ellipsoidal frame were obtained based on Global Positioning System (GPS) code observations for SPP method. The numerical computations were executed in post-processing mode in the Aircraft Positioning Software (APS) package. The mathematical scheme of equation observation of SPP method was solved using least square estimation in stochastic processing. In the experiment, airborne test using Cessna 172 aircraft on September 07, 2011 in the civil aerodrome in Mielec was realized. The aircraft position was recovery using observations data from Topcon HiperPro dual-frequency receiver with interval of 1 second.

Findings

In this paper, the average value of standard deviation of aircraft position is about 0.8 m for Latitude, 0.7 m for Longitude and 1.5 m for ellipsoidal height, respectively. In case of the Mean Radial Spherical Error (MRSE) parameter, the average value equals to 1.8 m. The standard deviation of receiver clock bias was presented in this paper and the average value amounts to 34.4 ns. In this paper, the safety protection levels of Horizontal Protection Level (HPL) and Vertical Protection Level (VPL) were also showed and described.

Research limitations/implications

In this paper, the analysis of aircraft positioning is focused on application the least square estimation in SPP method. The Kalman filtering operation can be also applied in SPP method for designation the position of the aircraft.

Practical implications

The SPP method can be applied in civil aviation for designation the position of the aircraft in Non-Precision Approach (NPA) GNSS procedure at the landing phase. The typical accuracy of aircraft position is better than 220 m for lateral navigation in NPA GNSS procedure. The limit of accuracy of aircraft position in vertical plane in NPA GNSS procedure is not available.

Social implications

This paper is destined for people who works in the area of aviation and air transport.

Originality/value

The work presents that SPP method as a universal technique for recovery of aircraft position in civil aviation, and this method can be also used in positioning of aircraft based on Global Navigation Satellite System (GLONASS) code observations.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 November 2018

Kamil Krasuski, Janusz C´wiklak and Henryk Jafernik

The purpose of the study is focused on implementation of Global Navigation Satellite System (GLONASS) technique in civil aviation for recovery of aircraft position using Precise…

Abstract

Purpose

The purpose of the study is focused on implementation of Global Navigation Satellite System (GLONASS) technique in civil aviation for recovery of aircraft position using Precise Point Positioning (PPP) method in kinematic mode.

Design/methodology/approach

The aircraft coordinates of Cessna 172 plane in XYZ geocentric frame were obtained based on GLONASS code and phase observations for PPP method. The numerical computations were executed in post-processing mode in the RTKPOST module in RTKLIB program. The mathematical scheme of equation observation of PPP method was solved using Kalman filter in stochastic processing.

Findings

In paper, the average accuracy of aircraft position is about 0.308 m for X coordinate, 0.274 m for Y coordinate, 0.379 m for Z coordinate. In case of the mean radial spherical error (MRSE) parameter, the average value equals to 0.562 m. In paper, the accuracy of aircraft position in BLh geodesic frame were also showed and described.

Research limitations/implications

The PPP method can be applied for determination the coordinates of receiver, receiver clock bias, Zenith Wet Delay (ZWD) parameter and ambiguity term for each satellite.

Practical implications

The PPP method is a new technique for aircraft positioning in air navigation. The PPP method can be also used in receiver autonomous integrity monitoring (RAIM) module in aircraft-based augmentation system (ABAS) system in air transport. The typical accuracy for recovery the aircraft position is about cm ÷ dm level using the PPP method.

Social implications

The paper is destined for people who work in area of geodesy, navigation, aviation and air transport.

Originality/value

The work presents the original research results of implementation the GLONASS satellite technique for recovery the aircraft position in civil aviation. Currently, the presented research PPP method is used in precise positioning of aircraft in air navigation based on global positioning system and GLONASS solutions.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Content available
Article
Publication date: 1 July 2004

316

Abstract

Details

Disaster Prevention and Management: An International Journal, vol. 13 no. 3
Type: Research Article
ISSN: 0965-3562

Article
Publication date: 11 September 2007

Don Harris

This paper aims to make a case that with the appropriate use of human factors methods it is possible to design and develop a single crew commercial aircraft using largely existing…

1849

Abstract

Purpose

This paper aims to make a case that with the appropriate use of human factors methods it is possible to design and develop a single crew commercial aircraft using largely existing technology.

Design/methodology/approach

From a review of the literature it is suggested that some of the functions of the non‐flying pilot would be better assumed by either onboard automation or ground‐based systems.

Findings

It is argued that the design of the flight deck and the role of the pilot require re‐conceptualising to accommodate the requirements for flying a highly automated aircraft single‐handed. With such re‐design, considerable efficiency gains will be achieved, but to fully realise these gains a system‐wide approach is required which extends beyond the design of the aircraft per se.

Research limitations/implications

This is only a high‐level thought piece to stimulate debate. Much greater consideration of all the issues raised is required, as is a change in regulatory requirements.

Practical implications

If implemented, the single crew aircraft could result in a revolution in air transport, offering considerable cost savings, especially on shorter routes with relatively small passenger loads.

Originality/value

A first attempt to use human factors as a design driver to produce operational and economic efficiency by the novel use of existing technologies spun‐out from other areas of aircraft development.

Details

Aircraft Engineering and Aerospace Technology, vol. 79 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of over 2000