Search results

1 – 10 of 24
Article
Publication date: 18 April 2024

Jibran Abbas and Ashish Khare

According to regulations, aircraft must be in an airworthy condition before they can be operated. To ensure airworthiness, they must be maintained by an approved component…

Abstract

Purpose

According to regulations, aircraft must be in an airworthy condition before they can be operated. To ensure airworthiness, they must be maintained by an approved component maintenance organisation. This study is aimed to identify potential errors that may arise during the final inspection and certification process of aircraft components, categorise them, determine their consequences and quantify the associated risks. Any removed aircraft components must be sent to an approved aircraft component maintenance organisation for further maintenance and issuance of European Union Aviation Safety Agency (EASA) Form 1. Thereafter, a final inspection and certification process must be conducted by certifying staff to receive an EASA Form 1. This process is crucial because any errors during this stage can result in the installation of unsafe components in an aircraft.

Design/methodology/approach

The Systematic Human Error Reduction and Prediction Approach (SHERPA) method was used to identify potential errors. This method involved a review of the procedures of three maintenance organisations, individual interviews with ten subject matter experts and a consensus group of 14 certifying staff from different maintenance organisations to achieve the desired results.

Findings

In this study, 39 potential errors were identified during the final inspection and certification process. Furthermore, analysis revealed that 48.7% of these issues were attributed to checking errors, making it the most common type of error observed.

Originality/value

This study pinpoints the potential errors in the final inspection and certification of aircraft components. It offers maintenance organisations a roadmap to assess procedures, implement preventive measures and reduce the likelihood of these errors.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 April 2024

Hamed Khadivar, Miles Murphy and Thomas Walker

This study investigates the impact of financial health and corporate governance on aviation safety, aiming to fill a critical gap in existing research. The purpose of this study…

Abstract

Purpose

This study investigates the impact of financial health and corporate governance on aviation safety, aiming to fill a critical gap in existing research. The purpose of this study is to identify how these factors influence the safety records of airlines and provide insights for regulators, airlines and stakeholders to enhance aviation safety.

Design/methodology/approach

Using a comprehensive international sample spanning 1950–2009 and later, this empirical analysis draws on diverse databases. The authors examine 372 airlines across 70 countries from 1990 to 2016. The research uses statistical models to analyze the relationship between financial indicators, corporate governance quality and aviation safety, addressing limitations of prior single-country studies.

Findings

The findings reveal a significant inverse relationship between financial health and accident propensity, with profitable airlines exhibiting lower accident rates. Additionally, airlines with higher corporate governance quality, characterized by qualified directors and stable leadership, experience fewer accidents. The study identifies key factors such as pilot errors, mechanical failures and adverse weather, contributing to approximately 75% of accidents, emphasizing the importance of organizational control.

Practical implications

This research has crucial implications for aviation safety policies and practices. Regulators and international organizations, such as International Civil Aviation Organization and International Air Transport Association, should allocate resources to supervise financially vulnerable airlines and those with lower governance quality. Governments might consider incentivizing safety practices through tax deductibility for relevant expenses. Shareholders are encouraged to prioritize qualified, younger and less busy directors, recognizing their impact on safety performance.

Originality/value

This study contributes to existing literature by addressing methodological biases and offering a comprehensive international perspective. The identification of a link between financial health, corporate governance and accident rates in the aviation industry provides valuable insights. The research informs policymakers, regulators and industry stakeholders on effective strategies to improve safety by considering financial and governance factors under their control.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 23 March 2023

Aditi Sushil Karvekar and Prasad Joshi

The purpose of this paper is to implement a closed loop regulated bidirectional DC to DC converter for an application in the electric power system of more electric aircraft. To…

Abstract

Purpose

The purpose of this paper is to implement a closed loop regulated bidirectional DC to DC converter for an application in the electric power system of more electric aircraft. To provide a consistent power supply to all of the electronic loads in an aircraft at the desired voltage level, good efficiency and desired transient and steady-state response, a smart and affordable DC to DC converter architecture in closed loop mode is being designed and implemented.

Design/methodology/approach

The aircraft electric power system (EPS) uses a bidirectional half-bridge DC to DC converter to facilitate the electric power flow from the primary power source – an AC generator installed on the aircraft engine’s shaft – to the load as well as from the secondary power source – a lithium ion battery – to the load. Rechargeable lithium ion batteries are used because they allow the primary power source to continue recharging them whenever the aircraft engine is running smoothly and because, in the event that the aircraft engine becomes overloaded during takeoff or turbulence, the charged secondary power source can step in and supply the load.

Findings

A novel nonsingular terminal sliding mode voltage controller based on exponential reaching law is used to keep the load voltage constant under any of the aforementioned circumstances, and its performance is contrasted with a tuned PI controller on the basis of their respective transient and steady-state responses. The former gives a faster and better transient and steady-state response as compared to the latter.

Originality/value

This research gives a novel control scheme for incorporating an auxiliary power source, i.e. rechargeable battery, in more electric aircraft EPS. The battery is so implemented that it can get regeneratively charged when primary power supply is capable of handling an additional load, i.e. the battery. The charging and discharging of the battery is carried out in closed loop mode to ensure constant battery terminal voltage, constant battery current and constant load voltage as per the requirement. A novel sliding mode controller is used to improve transient and steady-state response of the system.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 April 2024

Ashish Bhatt and Shripad P. Mahulikar

Aero-engine exhaust plume length can be more than the aircraft length, making it easier to detect and track by infrared seeker. Aim of this study is to analyze the effect of free…

Abstract

Purpose

Aero-engine exhaust plume length can be more than the aircraft length, making it easier to detect and track by infrared seeker. Aim of this study is to analyze the effect of free stream Mach number (M) on length of potential core of plume. Also, change in infrared (IR) signature of plume and aircraft surface with variation in elevation angle (θ) is examined.

Design/methodology/approach

Convergent divergent (CD) nozzle is located outside the rear fuselage of the aircraft. A two dimensional axisymmetric computational fluid dynamics (CFD) study was carried out to study effect of M on potential core. The CFD data with aircraft and plume was then used for IR signature analysis. The sensor position is changed with respect to aircraft from directly bottom towards frontal section of aircraft. The IR signature is studied in mid wave IR (MWIR) and long wave IR (LWIR) band.

Findings

The potential plume core length and width increases as M increases. At higher altitudes, the potential core length increases for a fixed M. The plume emits radiation in the MWIR band, whereas the aerodynamically heated aircraft surface emits IR in the LWIR band. The IR signature in the MWIR band continuously decreases as the sensor position changes from directly bottom towards frontal. In the LWIR band the IR signature initially decreases as the sensor moves from the directly bottom to the frontal, as the sensor begins to see the wing leading edges and nose cone, the IR signature in the LWIR band slightly increases.

Originality/value

The novelty of this study comes from the data reported on the effect of free stream Mach number on the potential plume core and variation of the overall IR signature of aircraft with change in elevation angle from directly below towards frontal section of aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 March 2024

Ayse KUCUK YILMAZ, Konstantinos N. MALAGAS and Triant G. FLOURIS

This study aims to develop an inclusive, multidisciplinary, flexible and organizationally adaptable safety risk management framework, including diversity management, that will be…

Abstract

Purpose

This study aims to develop an inclusive, multidisciplinary, flexible and organizationally adaptable safety risk management framework, including diversity management, that will be implemented to ensure safety is and remains at the desired level. If the number of incidents and potential incidents that could lead to accidents and their impact rates are to be reduced operationally and administratively, aviation safety risks and sources of risk must be better understood, sources of risk identified, and the safety risk management framework designed in an organization-specific and organization-wide sustainable way. At this point, it is necessary to draw the conceptual framework well and to define the boundaries of the concepts well. In this study, a framework model that can be adapted to the organization is proposed to optimize the management of risks and provide both efficient and effective resource allocation and organizational structure design in its operations and management functions.

Design/methodology/approach

The qualitative research method – triple techniques – was deemed appropriate for this study, which aims to identify, examine, interpret and develop the situations of safety management models. In this context, document analysis, business process modeling technique and Delphi techniques from qualitative research methods were used via integration as the methodology of this research.

Findings

To manage dynamic civil aviation management activities and business processes effectively and efficiently, the risk management process is the building block of the “Proposed Process Model” that supports the decision-making processes of aviation organizations and managers. This “Framework Conceptual Model” building block also helps build capacity and resilience by enabling continuous development, organizational learning, and flexible structuring.

Research limitations/implications

This research is limited to air transportation and aviation safety management issues. This research is limited specifically to a safety-based risk management framework for the aviation industry. This research may have social implications as source saving, optimum resource use and capacity building will make a contribution to society and add value besides operational and practical implementation.

Social implications

This research may contribute to more safe operations and functions in the aviation industry.

Originality/value

Management and academia may gain considerable support from this research to manage their safety risks via a corporate-tailored risk management framework, both improving resilience and developing corporate capacity. With this model presented, decision-makers will have a guiding structure that can optimally manage the main risk types that may be encountered in the safety risk in the fields of suppliers, manufacturers, demand changes, logistics, information management, environmental, legal and regulatory. Existing studies in the literature are generally in the form of algorithms and cannot be used as a decision-making support tool. This model aims to fill the gap in the literature. In addition, added value may be created by applying this model to optimum management safety risks in the real aviation industry and its related sectors.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 April 2024

Goksel Saracoglu, Serap Kiriş, Sezer Çoban, Muharrem Karaaslan, Tolga Depci and Emin Bayraktar

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

18

Abstract

Purpose

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

Design/methodology/approach

Notched and unnotched tensile tests of composites made of wool only and hybridized with a glass fiber layer were carried out, and fracture behavior and toughness at macro scale were determined. They were exposed to electromagnetic waves between 8 and 18 GHz frequencies using two horn antennas.

Findings

The keratin and lignin layer on the surface of the wool felt caused lower values to be obtained compared to the mechanical values given by pure epoxy. However, the use of wool felt in the symmetry layer of the laminated composite material provided higher mechanical values than the composite with glass fiber in the symmetry layer due to the mechanical interlocking it created. The use of wool in fabric form resulted in an increase in the modulus of elasticity, but no change in fracture toughness was observed. As a result of the electromagnetic analysis, it was also seen in the electromagnetic analysis that the transmittance of the materials was high, and the reflectance was low throughout the applied frequency range. Hence, it was concluded that all of the manufactured materials could be used as radome material over a wide band.

Practical implications

Sheep wool is an easy-to-supply and low-cost material. In this paper, it is presented that sheep wool can be evaluated as a biocomposite material and used for radome applications.

Originality/value

The combined evaluation of felt and fabric forms of a natural and inexpensive reinforcing element such as sheep wool and the combined evaluation of fracture mechanics and electromagnetic absorption properties will contribute to the evaluation of biocomposites in aviation.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 November 2023

Ahmad Ebrahimi and Sara Mojtahedi

Warranty-based big data analysis has attracted a great deal of attention because of its key capabilities and role in improving product quality while minimizing costs. Information…

Abstract

Purpose

Warranty-based big data analysis has attracted a great deal of attention because of its key capabilities and role in improving product quality while minimizing costs. Information and details about particular parts (components) repair and replacement during the warranty term, usually stored in the after-sales service database, can be used to solve problems in a variety of sectors. Due to the small number of studies related to the complete analysis of parts failure patterns in the automotive industry in the literature, this paper focuses on discovering and assessing the impact of lesser-studied factors on the failure of auto parts in the warranty period from the after-sales data of an automotive manufacturer.

Design/methodology/approach

The interconnected method used in this study for analyzing failure patterns is formed by combining association rules (AR) mining and Bayesian networks (BNs).

Findings

This research utilized AR analysis to extract valuable information from warranty data, exploring the relationship between component failure, time and location. Additionally, BNs were employed to investigate other potential factors influencing component failure, which could not be identified using Association Rules alone. This approach provided a more comprehensive evaluation of the data and valuable insights for decision-making in relevant industries.

Originality/value

This study's findings are believed to be practical in achieving a better dissection and providing a comprehensive package that can be utilized to increase component quality and overcome cross-sectional solutions. The integration of these methods allowed for a wider exploration of potential factors influencing component failure, enhancing the validity and depth of the research findings.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Abstract

Details

Capitalism, Health and Wellbeing
Type: Book
ISBN: 978-1-83797-897-7

Article
Publication date: 24 October 2023

Bianca Arcifa de Resende, Franco Giuseppe Dedini, Jony Javorsky Eckert, Tiago F.A.C. Sigahi, Jefferson de Souza Pinto and Rosley Anholon

This study aims to propose a facilitating methodology for the application of Fuzzy FMEA (Failure Mode and Effect Analysis), comparing the traditional approach with fuzzy…

Abstract

Purpose

This study aims to propose a facilitating methodology for the application of Fuzzy FMEA (Failure Mode and Effect Analysis), comparing the traditional approach with fuzzy variations, supported by a case application in the aeronautical sector.

Design/methodology/approach

Based on experts' opinions in risk analysis within the aeronautical sector, rules governing the relationship between severity, occurrence, detection and risk factor were defined. This served as input for developing a fuzzyfied FMEA tool using the Matlab Fuzzy Logic Toolbox. The tool was applied to the sealing process in a company within the aeronautical sector, using triangular and trapezoidal membership functions, and the results were compared with the traditional FMEA approach.

Findings

The results of the comparative application of traditional FMEA and fuzzyfied FMEA using triangular and trapezoidal functions have yielded valuable insights into risk analysis. The findings indicated that fuzzyfied FMEA maintained coherence with the traditional analysis in identifying higher-risk effects, aligning with the prioritization of critical failure modes. Additionally, fuzzyfied FMEA allowed for a more refined prioritization by accounting for variations in each variable through fuzzy rules, thereby improving the accuracy of risk analysis and providing a more realistic representation of potential hazards. The application of the developed fuzzyfied FMEA approach showed promise in enhancing risk assessment in the aeronautical sector by considering uncertainties and offering a more detailed and context-specific analysis compared to conventional FMEA.

Practical implications

This study emphasizes the potential of fuzzyfied FMEA in enhancing risk assessment by accurately identifying critical failure modes and providing a more realistic representation of potential hazards. The application case reveals that the proposed tool can be integrated with expert knowledge to improve decision-making processes and risk mitigation strategies within the aeronautical industry. Due to its straightforward approach, this facilitating methodology could also prove beneficial in other industrial sectors.

Originality/value

This paper presents the development and application of a facilitating methodology for implementing Fuzzy FMEA, comparing it with the traditional approach and incorporating variations using triangular and trapezoidal functions. This proposed methodology uses the Toolbox Fuzzy Logic of Matlab to create a fuzzyfied FMEA tool, enabling a more nuanced and context-specific risk analysis by considering uncertainties.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Book part
Publication date: 26 March 2024

Shireesha Manchem, Malathi Gottumukkala and K. Naga Sundari

Purpose: This chapter aims to enlighten the stakeholders on the role and contribution and the issues and challenges of large-scale industries in the wake of the globally unified…

Abstract

Purpose: This chapter aims to enlighten the stakeholders on the role and contribution and the issues and challenges of large-scale industries in the wake of the globally unified economies.

Need for the study: Large-scale industries are one of the pillars of any nation and can exercise an immense impact on the numerous facets of the economy of any country. Their role and contribution can benefit all the stakeholders, especially in today’s integrated and interdependent world economies. Hence, there is an absolute need to highlight the issues and challenges and suggest measures to overcome them to promote a resilient global economy.

Methodology: The study gathered data from secondary sources like textbooks, articles, and the internet.

Findings: The findings of the study state that large-scale industries are enormous contributors to employment creation, development of the economy, growth of revenue, research and development (R&D) and innovation, export promotion, and infrastructure. The significant challenges include regulatory compliance, workforce management, economic volatility, political instability, supply chain management, environmental compliance, and technology and infrastructure.

Protectionism, deregulation, public–private partnership, privatisation, and environmental regulation are significant government decisions that affect large-scale industries. The study identifies tax incentives, easy access to financing, and domestic and international trade policies to safeguard large-scale industries’ interests.

Practical implications: Large-scale industries contribute towards the growth of global economic resilience in terms of employment generation, technological advancements, and innovation, fostering international trade in today’s interconnected world.

Details

The Framework for Resilient Industry: A Holistic Approach for Developing Economies
Type: Book
ISBN: 978-1-83753-735-8

Keywords

1 – 10 of 24