Search results

1 – 10 of over 1000
Content available
Article
Publication date: 7 July 2020

Michael Wells, Michael Kretser, Ben Hazen and Jeffery Weir

This study aims to explore the viability of using C-17 reduced-engine taxi procedures from a cost savings and capability perspective.

1012

Abstract

Purpose

This study aims to explore the viability of using C-17 reduced-engine taxi procedures from a cost savings and capability perspective.

Design/methodology/approach

This study model expected engine fuel flow based on the number of operational engines, aircraft gross weight (GW) and average aircraft groundspeed. Using this model, the research executes a cost savings simulation estimating the expected annual savings produced by the proposed taxi methodology. Operational and safety risks are also considered.

Findings

The results indicate that significant fuel and costs savings are available via the employment of reduced-engine taxi procedures. On an annual basis, the mobility air force has the capacity to save approximately 1.18 million gallons of jet fuel per year ($2.66m in annual fuel costs at current rates) without significant risk to operations. The two-engine taxi methodology has the ability to generate capable taxi thrust for a maximum GW C-17 with nearly zero risks.

Research limitations/implications

This research was limited to C-17 procedures and efficiency improvements specifically, although it suggests that other military aircraft could benefit from these findings as is evident in the commercial airline industry.

Practical implications

This research recommends coordination with the original equipment manufacturer to rework checklists and flight manuals, development of a fleet-wide training program and evaluation of future aircraft recapitalization requirements intended to exploit and maximize aircraft surface operation savings.

Originality/value

If implemented, the proposed changes would benefit the society as government resources could be spent elsewhere and the impact on the environment would be reduced. This research conducted a rigorous analysis of the suitability of implementing a civilian airline’s best practice into US Air Force operations.

Details

Journal of Defense Analytics and Logistics, vol. 4 no. 2
Type: Research Article
ISSN: 2399-6439

Keywords

Content available
Article
Publication date: 1 January 2006

833

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 1 February 2005

4585

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 1 October 2002

378

Abstract

Details

Disaster Prevention and Management: An International Journal, vol. 11 no. 4
Type: Research Article
ISSN: 0965-3562

Open Access
Article
Publication date: 2 May 2023

Miroslav Šplíchal, Miroslav Červenka and Jaroslav Juracka

This study aims to focus on verifying the possibility of monitoring the condition of a turboprop engine using data recorded by on-board avionics Garmin G1000. This approach has…

Abstract

Purpose

This study aims to focus on verifying the possibility of monitoring the condition of a turboprop engine using data recorded by on-board avionics Garmin G1000. This approach has potential benefits for operators without the need to invest in specialised equipment. The main focus was on the inter-turbine temperature (ITT). An unexpected increase in temperature above the usual value may indicate an issue with the engine. The problem lies in the detection of small deviations when the absolute value of the ITT is affected by several external variables.

Design/methodology/approach

The ITT is monitored by engine sensors and stored by avionics 1× per second onto an SD card. This process generates large amount of data that needs to be processed. Therefore, an algorithm was created to detect the steady states of the engine parameters. The ITT value also depends on the flight parameters and surrounding environment. As a solution to these effects, the division of data into clusters that represent the usual flight profiles was tested. This ensures a comparison at comparable ambient pressures. The dominant environmental influence then remain at the ambient air temperature (OAT). Three OAT compensation methods were tested in this study. Compensation for the standard atmosphere, compensation for the standard temperature of the given flight level and compensation for the speed of the generator, where the regression analysis proved the dependence between the ambient temperature and the speed of the generator.

Findings

The influence of ambient temperature on the corrected ITT values is noticeable. The best method for correcting the OAT appears to be the use of compensation through the revolutions of the compressor turbine NG. The speed of the generator depends on several parameters, and can refine the corrected ITT value. During the long-term follow-up, the ITT differences (delta values) were within the expected range. The tested data did not include the behaviour of the engine with a malfunction or other damage that would clearly verify this approach. Therefore, the engine monitoring will continue.

Practical implications

This study presents a possible approach to turbine engine condition monitoring using limited on board avionic data. These findings can support the development of an engine condition monitoring system with automatic abnormality detection and low operating costs.

Originality/value

This article represent a practical description of problems in monitoring the condition of a turboprop engine in an aircraft with variable flight profiles. The authors are not aware of a similar method that uses monitoring of engine parameters at defined flight levels. Described findings should limit the influence of ambient air pressure on engine parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Content available
Article
Publication date: 1 June 2002

377

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 74 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 1 October 2005

727

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 1 December 1999

871

Abstract

Details

Disaster Prevention and Management: An International Journal, vol. 8 no. 5
Type: Research Article
ISSN: 0965-3562

Keywords

Content available
Article
Publication date: 27 February 2007

168

Abstract

Details

Disaster Prevention and Management: An International Journal, vol. 16 no. 1
Type: Research Article
ISSN: 0965-3562

Content available
Article
Publication date: 1 June 1998

99

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 70 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of over 1000