Search results

1 – 10 of 192
Article
Publication date: 29 April 2024

Qiuqi Wu, Youchao Sun and Man Xu

About 70% of all aircraft accidents are caused by human–machine interaction, thus identifying and quantifying performance shaping factors is a significant challenge in the study…

Abstract

Purpose

About 70% of all aircraft accidents are caused by human–machine interaction, thus identifying and quantifying performance shaping factors is a significant challenge in the study of human reliability. An information flow field model of human–machine interaction is put forward to help better pinpoint the factors influencing performance and to make up for the lack of a model of information flow and feedback processes in the aircraft cockpit. To enhance the efficacy of the human–machine interaction, this paper aims to examine the important coupling factors in the system using the findings of the simulation.

Design/methodology/approach

The performance-shaping factors were retrieved from the model, which was created to thoroughly describe the information flow. The coupling degree between the performance shaping factors was calculated, and simulation and sensitivity analysis are based on system dynamics.

Findings

The results show that the efficacy of human–computer interaction is significantly influenced by individual important factors and coupling factors. To decrease the frequency of accidents after seven hours, attention should be paid to these factors.

Originality/value

The novelty of this work lies in proposing a theoretical model of cockpit information flow and using system dynamics to analyse the effect of the factors in the human–machine loop on human–machine efficacy.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 25 January 2024

Inamul Hasan, Mukesh R., Radha Krishnan P., Srinath R. and Boomadevi P.

This study aims to find the characteristics of supercritical airfoil in helicopter rotor blades for hovering phase using numerical analysis and the validation using experimental…

Abstract

Purpose

This study aims to find the characteristics of supercritical airfoil in helicopter rotor blades for hovering phase using numerical analysis and the validation using experimental results.

Design/methodology/approach

Using numerical analysis in the forward phase of the helicopter, supercritical airfoil is compared with the conventional airfoil for the aerodynamic performance. The multiple reference frame method is used to produce the results for rotational analysis. A grid independence test was carried out, and validation was obtained using benchmark values from NASA data.

Findings

From the analysis results, a supercritical airfoil in hovering flight analysis proved that the NASA SC rotor produces 25% at 5°, 26% at 12° and 32% better thrust at 8° of collective pitch than the HH02 rotor. Helicopter performance parameters are also calculated based on momentum theory. Theoretical calculations prove that the NASA SC rotor is better than the HH02 rotor. The results of helicopter performance prove that the NASA SC rotor provides better aerodynamic efficiency than the HH02 rotor.

Originality/value

The novelty of the paper is it proved the aerodynamic performance of supercritical airfoil is performing better than the HH02 airfoil. The results are validated with the experimental values and theoretical calculations from the momentum theory.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 February 2023

Mehmet Necati Cizrelioğullari, Tapdig Veyran Imanov, Tugrul Gunay and Aliyev Shaiq Amir

Temperature anomalies in the upper troposphere have become a reality as a result of global warming, which has a noticeable impact on aircraft performance. The purpose of this…

Abstract

Purpose

Temperature anomalies in the upper troposphere have become a reality as a result of global warming, which has a noticeable impact on aircraft performance. The purpose of this study is to investigate the total air temperature (TAT) anomaly observed during the cruise level and its impact on engine parameter variations.

Design/methodology/approach

Empirical methodology is used in this study, and it is based on measurements and observations of anomalous phenomena on the tropopause. The primary data were taken from the Boeing 747-8F's enhanced flight data recorder, which refers to the quantitative method, while the qualitative method is based on a literature review and interviews. The GEnx Integrated Vehicle Health Management system was used for the study's evaluation of engine performance to support the complete range of operational priorities throughout the entire engine lifecycle.

Findings

The study's findings indicate that TAT and SAT anomalies, which occur between 270- and 320-feet flight level, have a substantial impact on aircraft performance at cruise altitude and, as a result, on engine parameters, specifically an increase in fuel consumption and engine exhaust gas temperature values. The TAT and Ram Rise anomalies were the focus of the atmospheric deviations, which were assessed as major departures from the International Civil Aviation Organizations–defined International Standard Atmosphere, which is obvious on a positive tendency and so goes against the norms.

Research limitations/implications

Necessary fixed flight parameters gathered from the aircraft's enhanced airborne flight recorder (EAFR) via Aeronautical Radio Incorporated (ARINC) 664 Part 7 at a certain velocity and altitude interfacing with the diagnostic program direct parameter display (DPD), allow for analysis of aircraft performance in a real-time frame. Thus, processed data transmits to the ground maintenance infrastructure for future evaluation and for proper maintenance solutions.

Originality/value

A real-time analysis of aircraft performance is possible using the diagnostic program DPD in conjunction with necessary fixed flight parameters obtained from the aircraft's EAFR via ARINC 664 Part 7 at a specific speed and altitude. Thus, processed data is transmitted to the ground infrastructure for maintenance to be evaluated in the future and to find the best maintenance fixes.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 April 2024

Jibran Abbas and Ashish Khare

According to regulations, aircraft must be in an airworthy condition before they can be operated. To ensure airworthiness, they must be maintained by an approved component…

Abstract

Purpose

According to regulations, aircraft must be in an airworthy condition before they can be operated. To ensure airworthiness, they must be maintained by an approved component maintenance organisation. This study is aimed to identify potential errors that may arise during the final inspection and certification process of aircraft components, categorise them, determine their consequences and quantify the associated risks. Any removed aircraft components must be sent to an approved aircraft component maintenance organisation for further maintenance and issuance of European Union Aviation Safety Agency (EASA) Form 1. Thereafter, a final inspection and certification process must be conducted by certifying staff to receive an EASA Form 1. This process is crucial because any errors during this stage can result in the installation of unsafe components in an aircraft.

Design/methodology/approach

The Systematic Human Error Reduction and Prediction Approach (SHERPA) method was used to identify potential errors. This method involved a review of the procedures of three maintenance organisations, individual interviews with ten subject matter experts and a consensus group of 14 certifying staff from different maintenance organisations to achieve the desired results.

Findings

In this study, 39 potential errors were identified during the final inspection and certification process. Furthermore, analysis revealed that 48.7% of these issues were attributed to checking errors, making it the most common type of error observed.

Originality/value

This study pinpoints the potential errors in the final inspection and certification of aircraft components. It offers maintenance organisations a roadmap to assess procedures, implement preventive measures and reduce the likelihood of these errors.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 February 2024

Jacques Abou Khalil, César Jiménez Navarro, Rami El Jeaid, Abderahmane Marouf, Rajaa El Akoury, Yannick Hoarau, Jean-François Rouchon and Marianna Braza

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to…

Abstract

Purpose

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to modify the upstream shock–boundary layer interaction (SBLI) around an A320 morphing prototype to control these instabilities, with emphasis to the attenuation or even suppression of the transonic buffet. The modification of the aerodynamic performances according to a large parametric study carried out at Reynolds number of 4.5 × 106, Mach number of 0.78 and various angles of attack in the range of (0, 2.4)° according to two morphing concepts (travelling waves and trailing edge vibration) are discussed, and the final benefits in aerodynamic performance increase are evaluated.

Design/methodology/approach

This article examines through high fidelity (Hi-Fi) numerical simulation the effects of the trailing edge (TE) actuation and of travelling waves along a specific area of the suction side starting from practically the most downstream position of the shock wave motion according to the buffet and extending up to nearly the TE. The present paper studies through spectral analysis the coherent structures development in the near wake and the comparison of the aerodynamic forces to the non-actuated case. Thus, the physical mechanisms of the morphing leading to the increase of the lift-to-drag ratio and the drag and noise sources reduction are identified.

Findings

This study investigates the influence of shear-layer and near-wake vortices on the SBLI around an A320 aerofoil and attenuation of the related instabilities thanks to novel morphing: travelling waves generated along the suction side and trailing-edge vibration. A drag reduction of 14% and a lift-to-drag increase in the order of 8% are obtained. The morphing has shown a lift increase in the range of (1.8, 2.5)% for angle of attack of 1.8° and 2.4°, where a significant lift increase of 7.7% is obtained for the angle of incidence of 0° with a drag reduction of 3.66% yielding an aerodynamic efficiency of 11.8%.

Originality/value

This paper presents results of morphing A320 aerofoil, with a chord of 70cm and subjected to two actuation kinds, original in the state of the art at M = 0.78 and Re = 4.5 million. These Hi-Fi simulations are rather rare; a majority of existing ones concern smaller dimensions. This study showed for the first time a modified buffet mode, displaying periodic high-lift “plateaus” interspersed by shorter lift-decrease intervals. Through trailing-edge vibration, this pattern is modified towards a sinusoidal-like buffet, with a considerable amplitude decrease. Lock-in of buffet frequency to the actuation is obtained, leading to this amplitude reduction and a drastic aerodynamic performance increase.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 April 2024

Rui Lin, Qiguan Wang, Xin Yang and Jianwen Huo

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This…

Abstract

Purpose

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This situation will seriously affect the stability of the spherical robot. Therefore, this paper aims to propose a control method based on backstepping and disturbance observers for oscillation suppression.

Design/methodology/approach

This paper analyzes the mechanism of oscillation. The oscillation model of the spherical robot is constructed and the relationship between the oscillation and the internal structure of the sphere is analyzed. Based on the oscillation model, the authors design the oscillation suppression control of the spherical robot using the backstepping method. At the same time, a disturbance observer is added to suppress the disturbance.

Findings

It is found that the control system based on backstepping and disturbance observer is simple and efficient for nonlinear models. Compared with the PID controller commonly used in engineering, this control method has a better control effect.

Practical implications

The proposed method can provide a reliable and effective stability scheme for spherical robots. The problem of instability in real motion is solved.

Originality/value

In this paper, the oscillation model of a spherical robot is innovatively constructed. Second, a new backstepping control method combined with a disturbance observer for the spherical robot is proposed to suppress the oscillation.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 December 2023

Eyyub Can Odacioglu, Lihong Zhang, Richard Allmendinger and Azar Shahgholian

There is a growing need for methodological plurality in advancing operations management (OM), especially with the emergence of machine learning (ML) techniques for analysing…

278

Abstract

Purpose

There is a growing need for methodological plurality in advancing operations management (OM), especially with the emergence of machine learning (ML) techniques for analysing extensive textual data. To bridge this knowledge gap, this paper introduces a new methodology that combines ML techniques with traditional qualitative approaches, aiming to reconstruct knowledge from existing publications.

Design/methodology/approach

In this pragmatist-rooted abductive method where human-machine interactions analyse big data, the authors employ topic modelling (TM), an ML technique, to enable constructivist grounded theory (CGT). A four-step coding process (Raw coding, expert coding, focused coding and theory building) is deployed to strive for procedural and interpretive rigour. To demonstrate the approach, the authors collected data from an open-source professional project management (PM) website and illustrated their research design and data analysis leading to theory development.

Findings

The results show that TM significantly improves the ability of researchers to systematically investigate and interpret codes generated from large textual data, thus contributing to theory building.

Originality/value

This paper presents a novel approach that integrates an ML-based technique with human hermeneutic methods for empirical studies in OM. Using grounded theory, this method reconstructs latent knowledge from massive textual data and uncovers management phenomena hidden from published data, offering a new way for academics to develop potential theories for business and management studies.

Details

International Journal of Operations & Production Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 14 March 2024

Sina Tarighi

The purpose of this study is to define and develop a new technological development path for latecomer firms in developing countries.

Abstract

Purpose

The purpose of this study is to define and develop a new technological development path for latecomer firms in developing countries.

Design/methodology/approach

An analytical framework for development based on the technological capability (TC) dimensions is developed and examined in the drilling sector. Since the process of TC accumulation is dynamic, the case study approach is the best method for an exploratory theory-building study. Through a comparative case study of two Iranian drilling contractors, a new path for the technological development of latecomer oil service companies is proposed.

Findings

The study of two cases indicates that despite having similar scope and levels of TC, one of them demonstrated superior technical performance. To address this difference, the concept of operational efficiency is introduced which is considered the outcome of increasing the depth of TC.

Practical implications

Although upgrading the level of technological and innovation capability is an important path for technological development, latecomers that suffer from various disadvantages can perform their routine activities with superior performance and develop through their basic operational/production capabilities. Also, specialized indicators designed for assessing the level and depth of TC in the drilling industry have important insights for evaluating the technological and competitive position of oil service companies.

Originality/value

To the best of the author’s knowledge, this study takes the first step in defining and elaborating on the concept of depth of TC as a development path for latecomers. It also introduced a novel approach to the global operational/production efficiency frontier as a target for their catch-up.

Details

Journal of Science and Technology Policy Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 16 April 2024

Yang Liu, Xiang Huang, Shuanggao Li and Wenmin Chu

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head…

Abstract

Purpose

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head connected with aircraft component. This study aims to propose a ball head adaptive positioning method based on impedance control.

Design/methodology/approach

First, a target impedance model for ball head positioning is constructed, and a reference positioning trajectory is generated online based on the contact force between the ball head and the ball socket. Second, the target impedance parameters were optimized based on the artificial fish swarm algorithm. Third, to improve the robustness of the impedance controller in unknown environments, a controller is designed based on model reference adaptive control (MRAC) theory and an adaptive impedance control model is built in the Simulink environment. Finally, a series of ball head positioning experiments are carried out.

Findings

During the positioning of the ball head, the contact force between the ball head and the ball socket is maintained at a low level. After the positioning, the horizontal contact force between the ball head and the socket is less than 2 N. When the position of the contact environment has the same change during ball head positioning, the contact force between the ball head and the ball socket under standard impedance control will increase to 44 N, while the contact force of the ball head and the ball socket under adaptive impedance control will only increase to 19 N.

Originality/value

In this paper, impedance control is used to decouple the force-position relationship of the ball head during positioning, which makes the entire process of ball head positioning complete under low stress conditions. At the same time, by constructing an adaptive impedance controller based on MRAC, the robustness of the positioning system under changes in the contact environment position is greatly improved.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 28 February 2023

Xiaowei Wang, Yang Yang, Albert P.C. Chan, Hung-lin Chi and Esther H.K. Yung

With the increasing use of small unmanned aircrafts (SUAs), many countries have enacted laws and regulations to ensure the safe use of SUAs. However, there is a lack of…

Abstract

Purpose

With the increasing use of small unmanned aircrafts (SUAs), many countries have enacted laws and regulations to ensure the safe use of SUAs. However, there is a lack of industry-specific regulations accounting for the unique features of construction-related SUA operations. Operating SUAs in the construction industry is attributed to specific risks and challenges, which should be regulated to maximize the utility of SUAs in construction. This study, therefore, aims to develop a multi-dimensional regulatory framework for using SUAs in the construction industry.

Design/methodology/approach

A combination of quantitative and qualitative methods was used to compare seven selected national/regional SUA regulations to identify the applicability of implementing the existing regulations in construction. The interview surveys were then conducted to diagnose the challenges of construction-related SUA operations and gather interviewees' suggestions on the regulatory framework for SUA uses in construction.

Findings

The research found that some challenges of construction-related SUAs operations were not addressed in the current regulations. These challenges included the complex and time-consuming SUA operation permit, lack of regulation for special SUA operations in construction, insufficient regulatory compliance monitoring and a lack of construction-related remote pilots' training. A regulatory framework was then developed based on the findings of comparative analysis and interview surveys.

Research limitations/implications

This study mainly compared seven representative countries/regions' regulations, leading to a small sample size. Further research should be carried out to study the SUA regulations in other places, such as South Africa, South America or Middle East countries. Besides, this study's respondents to the interviews were primarily concentrated in Hong Kong, which may cause the interview results to differ from the construction industry in other countries/regions. A large-scale interview survey should be conducted in other places in the future to validate the current findings.

Practical implications

The proposed regulatory framework provides a reference for the policy-makers to formulate appropriate industry-specific SUA regulations and improve the applicability of SUA regulations in the construction industry. It sheds light upon the future of SUA regulations and the development of regulatory practice in this area.

Originality/value

This study is the first to propose a multi-dimensional regulatory framework for operating SUAs in construction by comprehensive policy comparisons and interviews. The regulatory framework offers a fresh insight into the unexplored research area and points out the direction for subsequent studies on SUA regulations in the construction industry.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 192