Search results

1 – 10 of over 13000
Article
Publication date: 18 April 2024

Jibran Abbas and Ashish Khare

According to regulations, aircraft must be in an airworthy condition before they can be operated. To ensure airworthiness, they must be maintained by an approved component

Abstract

Purpose

According to regulations, aircraft must be in an airworthy condition before they can be operated. To ensure airworthiness, they must be maintained by an approved component maintenance organisation. This study is aimed to identify potential errors that may arise during the final inspection and certification process of aircraft components, categorise them, determine their consequences and quantify the associated risks. Any removed aircraft components must be sent to an approved aircraft component maintenance organisation for further maintenance and issuance of European Union Aviation Safety Agency (EASA) Form 1. Thereafter, a final inspection and certification process must be conducted by certifying staff to receive an EASA Form 1. This process is crucial because any errors during this stage can result in the installation of unsafe components in an aircraft.

Design/methodology/approach

The Systematic Human Error Reduction and Prediction Approach (SHERPA) method was used to identify potential errors. This method involved a review of the procedures of three maintenance organisations, individual interviews with ten subject matter experts and a consensus group of 14 certifying staff from different maintenance organisations to achieve the desired results.

Findings

In this study, 39 potential errors were identified during the final inspection and certification process. Furthermore, analysis revealed that 48.7% of these issues were attributed to checking errors, making it the most common type of error observed.

Originality/value

This study pinpoints the potential errors in the final inspection and certification of aircraft components. It offers maintenance organisations a roadmap to assess procedures, implement preventive measures and reduce the likelihood of these errors.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 July 1948

THE subject I am to discuss deals with some aspects of aerodrome usability.

82

Abstract

THE subject I am to discuss deals with some aspects of aerodrome usability.

Details

Aircraft Engineering and Aerospace Technology, vol. 20 no. 7
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 September 1970

Accles & Pollock Ltd. of Oldbury, Worcestershire, a TI Steel Tube Division company, will be exhibiting a comprehensive range of precision steel tube and tubular products…

Abstract

Accles & Pollock Ltd. of Oldbury, Worcestershire, a TI Steel Tube Division company, will be exhibiting a comprehensive range of precision steel tube and tubular products, including plain, annularly convoluted and thin wall tube, at Farnborough.

Details

Aircraft Engineering and Aerospace Technology, vol. 42 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 4 July 2016

Fabrizio Nicolosi, Salvatore Corcione and Pierluigi Della Vecchia

This paper aims to deal with the experimental estimation of both longitudinal- and lateral-directional aerodynamic characteristics of a new twin-engine, 11-seat commuter aircraft.

Abstract

Purpose

This paper aims to deal with the experimental estimation of both longitudinal- and lateral-directional aerodynamic characteristics of a new twin-engine, 11-seat commuter aircraft.

Design/methodology/approach

Wind tunnel tests have been conducted on a 1:8.75 scaled model. A modular model (fuselage, wing, nacelle, winglet and tail planes) has been built to analyze both complete aircraft aerodynamic characteristics and mutual effects among components. The model has been also equipped with trailing edge flaps, elevator and rudder control surfaces.

Findings

Longitudinal tests have shown the goodness of the aircraft design in terms of aircraft stability, control and trim capabilities at typical clean, take-off and landing conditions. The effects of fuselage, nacelles and winglets on lift, pitching moment and drag coefficients have been investigated. Lateral-directional stability and control characteristics of the complete aircraft and several aircraft component combinations have been tested to estimate the aircraft components’ interactions.

Research limitations/implications

The experimental tests have been performed at a Reynolds number of about 0.6e6, whereas the free-flight Reynolds number range should be between 4.5e6 and 9.5e6. Thus, all the measured data suffer from the Reynolds number scaling effect.

Practical implications

The study provides useful aerodynamic database for P2012 Traveller commuter aircraft.

Originality/value

The paper deals with the experimental investigation of a new general aviation 11-seat commuter aircraft being brought to market by Tecnam Aircraft Industries and it brings some material on applied industrial design in the open literature.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 September 1968

IN the two years since the last Farnborough Air Show was held by the Society of British Aerospace Companies the aircraft industry has achieved an almost complete metamorphosis…

Abstract

IN the two years since the last Farnborough Air Show was held by the Society of British Aerospace Companies the aircraft industry has achieved an almost complete metamorphosis from the body blows in the form of major programme cancellations that almost felled it in 1965 to the very healthy position that it holds today.

Details

Aircraft Engineering and Aerospace Technology, vol. 40 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 6 February 2017

Junxia Jiang, Chen Bian and Yinglin Ke

The purpose of this paper is to design a new method to realize automatic assembly of aircraft components with large shafts such as canard and vertical tail. The assembly structure…

Abstract

Purpose

The purpose of this paper is to design a new method to realize automatic assembly of aircraft components with large shafts such as canard and vertical tail. The assembly structure of component with large shaft and fuselage is a mating assembly structure, and it is a challenge to satisfy the precision and assembly requirement.

Design/methodology/approach

According to the assembly structure features and process requirements of an aircraft component with large shaft, the operating principle of precise assembly system for shaft-hole mating is analyzed in this paper. The model of compliant assembly for shaft-hole mating is constructed, and force condition analysis of the compliant assembly is performed. An automatic precise shaft-hole assembly method for aircraft assembly using 5 degrees of freedom spatial mechanism, compliance technology and servo feeding system is put forward based on the analysis. A 5 degrees of freedom passive compliant experimental equipment has been developed.

Findings

Application test results of the 5 degrees of freedom passive compliant experimental equipment show that the simulated canard can be mated automatically and accurately through this method with high efficiency and high quality as long as the tip of shaft enters into the range of hole’s chamfer.

Practical implications

This method has been used in an aircraft assembly project. The practical results show that the aircraft components with large shafts can be mated automatically and accurately through this method with high efficiency and high quality.

Originality/value

This paper presents a new method and designs a new assembly system to realize the assembly of the aircraft components with large shafts. The research will promote the automation of fuselage assembly.

Details

Assembly Automation, vol. 37 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 August 2002

P. Samaranayake, G.S. Lewis, E.R.A. Woxvold and D. Toncich

This paper documents research and development that were undertaken as collaboration between the Industrial Research Institute of Swinburne University of Technology (IRIS), Armor…

2761

Abstract

This paper documents research and development that were undertaken as collaboration between the Industrial Research Institute of Swinburne University of Technology (IRIS), Armor Pty Ltd and QANTAS. The objective of the research was to investigate the application of a unitary software structure, composed of the critical path method (CPM), materials requirements planning (MRP) and production activity control (PAC) techniques, to the management of large‐scale maintenance activities (specifically aircraft maintenance). This structure had previously been applied to the manufacturing (i.e. assembly) process but the maintenance problem posed significant new challenges. First, there was the issue of generating a disassembly structure, and second, the reconciliation of demands arising from non‐serviceable components. This paper documents the implementation of the structure and the methods that were used to validate its functionality on a test‐case application (i.e. aircraft maintenance problem).

Details

International Journal of Operations & Production Management, vol. 22 no. 8
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 22 March 2021

Anatolii Kretov

The purpose of this work is to further develop the methodology for calculating the aircraft take-off mass and its main functional components for the conceptual analysis and…

Abstract

Purpose

The purpose of this work is to further develop the methodology for calculating the aircraft take-off mass and its main functional components for the conceptual analysis and synthesis of new projects.

Design/methodology/approach

The method is based on the assessment of changes in the take-off gross mass (TOGM) of the already developed project or already existing a basic version of the aircraft when making local mass changes for its modification or for the numerical researches to create a more advanced project. The method is based on the “sensitivity factors of mass” (SFM) of aircraft, which represents the ratio of TOGM to initial (local) mass changes of its main functional components. The method of analytical refined calculation of SFM for the initial mass change and the main aerodynamic characteristics is given.

Findings

In comparison with the long-known method based on weight (mass) growth factors, which were considered constant, this method takes into account the dependence from the value of the initial local mass change and its functional purpose.

Practical implications

This method allows the designer to calculate more strictly the final changes in the TOGM on the initial stages of conceptual design when finding new project solutions. Numerical calculations are given on the example of passenger aircraft. The dependence of SFM and TOGM and its functional masses on the value of the initial change of the structure mass are shown. This method is used in the educational process at the college of Aerospace Engineering in the Aircraft Design department.

Originality/value

The considered method based on SFM is simple and convenient and more accurate for conducting project research on many project parameters when analyzing and synthesizing a new project.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 August 2021

Anna Yakovlieva, Sergii Boichenko, Utku Kale and András Nagy

The purpose of this study is to analyze existing policies, methods and technologies, which are aimed at the rational and proper handling of decommissioned aviation transport…

Abstract

Purpose

The purpose of this study is to analyze existing policies, methods and technologies, which are aimed at the rational and proper handling of decommissioned aviation transport means, determination of the world trends and substantiation of the prospects for implementation of utilization and recycling programs in the aviation industry. This research is devoted to problems of utilization and recycling of decommissioned aircraft and its components: features of proper handling of aviation industry vehicles are considered; the analysis of existing methods and technologies aimed at the rational and correct handling of the end-of-life aircraft is carried out; the necessity of the introduction of the system of complex utilization of aviation equipment is substantiated; the ecological and economic problems connected with the utilization and recycling of aviation vehicles, their units and units are considered; and the relevance and feasibility of introducing recycling programs in the field of aviation industry waste management are substantiated.

Design/methodology/approach

Problems of utilization and recycling of decommissioned aircraft and its components are considered in this research. The analysis of existing methods and technologies aimed at the rational and correct handling of the end-of-life aircraft is carried out. In addition to this, the ecological and economic problems connected with the utilization and recycling of aviation vehicles, their units and parts are considered. Moreover, the relevance and feasibility of introducing recycling programs in the field of aviation industry waste management are substantiated.

Findings

In this study, the life cycle of aircraft is carried out and analyzed. The existing methodologies and approaches to end-of-life aircraft recycling and utilization are presented in this paper. The experience of the leading organizations in the sphere of decommissioned aircraft recycling, such as Aircraft Fleet Recycling Association and Process for Advanced Management of End-of-Life Aircraft, are considered as well. Environmental and economical benefits to aviation and neighbor industries, arising from the introduction of aircraft recycling systems, are shown.

Originality/value

The existing experience of leading companies in the aviation and aircraft recycling industry is accumulated and analyzed to show and propose the general methodology for the development and implementation methodology of end-of-life aircraft recycling and utilization.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 October 1964

TO say that the Twenty‐fourth S.B.A.C. Show was an unqualified success is perhaps to gild the lily. True there were disappointments— the delay which kept the TSR‐2 on the ground…

165

Abstract

TO say that the Twenty‐fourth S.B.A.C. Show was an unqualified success is perhaps to gild the lily. True there were disappointments— the delay which kept the TSR‐2 on the ground until well after the Show being one—but on the whole the British industry was well pleased with Farnborough week and if future sales could be related to the number of visitors then the order books would be full for many years to come. The total attendance at the Show was well over 400,000—this figure including just under 300,000 members of the public who paid to enter on the last three days of the Show. Those who argued in favour of allowing a two‐year interval between the 1962 Show and this one seem to be fully vindicated, for these attendance figures are an all‐time record. This augurs well for the future for it would appear that potential customers from overseas are still anxious to attend the Farnborough Show, while the public attendance figures indicate that Britain is still air‐minded to a very healthy degree. It is difficult to pick out any one feature or even one aircraft as being really outstanding at Farnborough, but certainly the range of rear‐engined civil jets (HS. 125, BAC One‐Eleven, Trident and VCIQ) served as a re‐minder that British aeronautical engineering prowess is without parallel, while the number of rotorcraft to be seen in the flying display empha‐sized the growing importance of the helicopter in both civil and military operations. As far as the value of Farnborough is concerned, it is certainly a most useful shop window for British aerospace products, and if few new orders are actually received at Farnborough, a very large number are announced— as our ’Orders and Contracts' column on page 332 bears witness. It is not possible to cover every exhibit displayed at the Farnborough Show but the following report describes a wide cross‐section beginning with the exhibits of the major airframe and engine companies.

Details

Aircraft Engineering and Aerospace Technology, vol. 36 no. 10
Type: Research Article
ISSN: 0002-2667

1 – 10 of over 13000