Search results

1 – 10 of 308
Open Access
Article
Publication date: 6 March 2024

Chuloh Jung, Muhammad Azzam Ismail, Mohammad Arar and Nahla AlQassimi

This study aims to evaluate the efficiency of various techniques for enhancing indoor air quality (IAQ) in construction. It analyzed the alterations in the concentration of indoor…

Abstract

Purpose

This study aims to evaluate the efficiency of various techniques for enhancing indoor air quality (IAQ) in construction. It analyzed the alterations in the concentration of indoor air pollutants over time for each product employed in controlling pollution sources and removing it, which included eco-friendly substances and adsorbents. The study will provide more precise and dependable data on the effectiveness of these control methods, ultimately supporting the creation of more efficient and sustainable approaches for managing indoor air pollution in buildings.

Design/methodology/approach

The research investigates the impact of eco-friendly materials and adsorbents on improving indoor air quality (IAQ) in Dubai's tall apartment buildings. Field experiments were conducted in six units of The Gate Tower, comparing the IAQ of three units built with “excellent” grade eco-friendly materials with three built with “good” grade materials. Another experiment evaluated two adsorbent products (H and Z) in the Majestic Tower over six months. Results indicate that “excellent” grade materials significantly reduced toluene emissions. Adsorbent product Z showed promising results in pollutant reduction, but there is concern about the long-term behavior of adsorbed chemicals. The study emphasizes further research on household pollutant management.

Findings

The research studied the effects of eco-friendly materials and adsorbents on indoor air quality in Dubai's new apartments. It found that apartments using “excellent” eco-friendly materials had significantly better air quality, particularly reduced toluene concentrations, compared to those using “good” materials. However, high formaldehyde (HCHO) emissions were observed from wood products. While certain construction materials led to increased ethylbenzene and xylene levels, adsorbent product Z showed promise in reducing pollutants. Yet, there is a potential concern about the long-term rerelease of these trapped chemicals. The study emphasizes the need for ongoing research in indoor pollutant management.

Research limitations/implications

The research, while extensive, faced limitations in assessing the long-term behavior of adsorbed chemicals, particularly the potential for rereleasing trapped pollutants over time. Despite the study spanning a considerable period, indoor air pollutant concentrations in target households did not stabilize, making it challenging to determine definitive improvement effects and reduction rates among products. Comparisons were primarily relative between target units, and the rapid rise in pollutants during furniture introduction warrants further examination. Consequently, while the research provides essential insights, it underscores the need for more prolonged and comprehensive evaluations to fully understand the materials' and adsorbents' impacts on indoor air quality.

Practical implications

The research underscores the importance of choosing eco-friendly materials in new apartment constructions for better IAQ. Specifically, using “excellent” graded materials can significantly reduce harmful pollutants like toluene. However, the study also highlights that certain construction activities, such as introducing furniture, can rapidly elevate pollutant levels. Moreover, while adsorbents like product Z showed promise in reducing pollutants, there is potential for adsorbed chemicals to be rereleased over time. For practical implementation, prioritizing higher-grade eco-friendly materials and further investigation into furniture emissions and long-term behavior of adsorbents can lead to healthier indoor environments in newly built apartments.

Originality/value

The research offers a unique empirical assessment of eco-friendly materials' impact on indoor air quality within Dubai's rapidly constructed apartment buildings. Through field experiments, it directly compares different material grades, providing concrete data on pollutant levels in newly built environments. Additionally, it explores the efficacy of specific adsorbents, which is of high value to the construction and public health sectors. The findings shed light on how construction choices can influence indoor air pollution, offering valuable insights to builders, policymakers and residents aiming to promote public health and safety in urban living spaces.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 15 December 2023

Francis Olawale Abulude, Domenico Suriano, Samuel Dare Oluwagbayide, Akinyinka Akinnusotu, Ifeoluwa Ayodeji Abulude and Emmanuel Awogbindin

This study aimed to characterize the concentrations of indoor pollutants (such as carbon dioxide (CO2), ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2), as well as…

Abstract

Purpose

This study aimed to characterize the concentrations of indoor pollutants (such as carbon dioxide (CO2), ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2), as well as particulate matter (PM) (PM1, PM2.5 and PM10) in Akure, Nigeria, as well as the relationship between the parameters’ concentrations.

Design/methodology/approach

The evaluation, which lasted four months, used a low-cost air sensor that was positioned two meters above the ground. All sensor procedures were correctly carried out.

Findings

CO2 (430.34 ppm), NO2 (93.31 ppb), O3 (19.94 ppb), SO2 (40.87 ppb), PM1 (29.31 µg/m3), PM2.5 (43.56 µg/m3), PM10 (50.70 µg/m3), temperature (32.4°C) and relative humidity (50.53%) were the average values obtained. The Pearson correlation depicted the relationships between the pollutants and weather factors. With the exception of April, which had significant SO2 (18%) and low PM10 (49%) contributions, NO2 and PM10 were the most common pollutants in all of the months. The mean air quality index (AQI) for NO2 indicated that the AQI was “moderate” (51–100). In contrast to SO2, whose AQI ranged from “moderate” to “very unhealthy,” O3's AQI ranged from “good” (50) to “unhealthy” (151–200). Since PM1, PM2.5 and PM10 made up the majority of PC1’s contribution, both PM2.5 and PM10 were deemed “hazardous.”

Practical implications

The practical implication of indoor air pollution is long-term health effects, including heart disease, lung cancer and respiratory diseases such as emphysema. Indoor air pollution can also cause long-term damage to people’s nerves, brain, kidneys, liver and other organs.

Originality/value

Lack of literature in terms of indoor air quality (IAQ) in Akure, Ondo State. With this work, the information obtained will assist all stakeholders in policy formulation and implementation. Again, the low-cost sensor used is new to this part of the world.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Content available
Article
Publication date: 4 January 2023

Shilpa Sonawani and Kailas Patil

Indoor air quality monitoring is extremely important in urban, industrial areas. Considering the devastating effect of declining quality of air in major part of the countries like…

Abstract

Purpose

Indoor air quality monitoring is extremely important in urban, industrial areas. Considering the devastating effect of declining quality of air in major part of the countries like India and China, it is highly recommended to monitor the quality of air which can help people with respiratory diseases, children and elderly people to take necessary precautions and stay safe at their homes. The purpose of this study is to detect air quality and perform predictions which could be part of smart home automation with the use of newer technology.

Design/methodology/approach

This study proposes an Internet-of-Things (IoT)-based air quality measurement, warning and prediction system for ambient assisted living. The proposed ambient assisted living system consists of low-cost air quality sensors and ESP32 controller with new generation embedded system architecture. It can detect Indoor Air Quality parameters like CO, PM2.5, NO2, O3, NH3, temperature, pressure, humidity, etc. The low cost sensor data are calibrated using machine learning techniques for performance improvement. The system has a novel prediction model, multiheaded convolutional neural networks-gated recurrent unit which can detect next hour pollution concentration. The model uses a transfer learning (TL) approach for prediction when the system is new and less data available for prediction. Any neighboring site data can be used to transfer knowledge for early predictions for the new system. It can have a mobile-based application which can send warning notifications to users if the Indoor Air Quality parameters exceed the specified threshold values. This is all required to take necessary measures against bad air quality.

Findings

The IoT-based system has implemented the TL framework, and the results of this study showed that the system works efficiently with performance improvement of 55.42% in RMSE scores for prediction at new target system with insufficient data.

Originality/value

This study demonstrates the implementation of an IoT system which uses low-cost sensors and deep learning model for predicting pollution concentration. The system is tackling the issues of the low-cost sensors for better performance. The novel approach of pretrained models and TL work very well at the new system having data insufficiency issues. This study contributes significantly with the usage of low-cost sensors, open-source advanced technology and performance improvement in prediction ability at new systems. Experimental results and findings are disclosed in this study. This will help install multiple new cost-effective monitoring stations in smart city for pollution forecasting.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Open Access
Article
Publication date: 11 November 2022

Sara Zanni, Matteo Mura, Mariolina Longo, Gabriella Motta and Davide Caiulo

This study aims to provide a comprehensive framework for the study of indoor air quality (IAQ) in hospitality premises. The goal is to identify the drivers of air pollution, both…

1849

Abstract

Purpose

This study aims to provide a comprehensive framework for the study of indoor air quality (IAQ) in hospitality premises. The goal is to identify the drivers of air pollution, both at the exogenous and endogenous level, to generate insights for facility managers.

Design/methodology/approach

The complexity of hospitality premises requires an integrated approach to properly investigate IAQ. The authors develop an overarching framework encompassing a monitoring method, based on real-time sensors, a technological standard and a set of statistical analyses for the assessment of both IAQ performance and drivers, based on correlation analyses, analysis of variance and multivariate regressions.

Findings

The findings suggest that the main drivers of IAQ differ depending on the area monitored: areas in contact with the outdoors or with high ventilation rates, such as halls, are affected by outdoor air quality more than guestrooms or fitness areas, where human activities are the main sources of contamination.

Research limitations/implications

The results suggest that the integration of IAQ indicators into control dashboards would support management decisions, both in defining protocols to support resilience of the sector in a postpandemic world and in directing investments on the premises. This would also address guests’ pressing demands for a broader approach to cleanliness and safety and support their satisfaction and intention to return.

Originality/value

To the best of the authors’ knowledge, this is the first study developing a comprehensive framework to systematically address IAQ and its drivers, based on a standard and real-time monitoring. The framework has been applied across the longest period of monitoring for a hospitality premise thus far and over an entire hotel facility.

Details

International Journal of Contemporary Hospitality Management, vol. 35 no. 2
Type: Research Article
ISSN: 0959-6119

Keywords

Open Access
Article
Publication date: 13 August 2021

Habeeb Balogun, Hafiz Alaka and Christian Nnaemeka Egwim

This paper seeks to assess the performance levels of BA-GS-LSSVM compared to popular standalone algorithms used to build NO2 prediction models. The purpose of this paper is to…

1131

Abstract

Purpose

This paper seeks to assess the performance levels of BA-GS-LSSVM compared to popular standalone algorithms used to build NO2 prediction models. The purpose of this paper is to pre-process a relatively large data of NO2 from Internet of Thing (IoT) sensors with time-corresponding weather and traffic data and to use the data to develop NO2 prediction models using BA-GS-LSSVM and popular standalone algorithms to allow for a fair comparison.

Design/methodology/approach

This research installed and used data from 14 IoT emission sensors to develop machine learning predictive models for NO2 pollution concentration. The authors used big data analytics infrastructure to retrieve the large volume of data collected in tens of seconds for over 5 months. Weather data from the UK meteorology department and traffic data from the department for transport were collected and merged for the corresponding time and location where the pollution sensors exist.

Findings

The results show that the hybrid BA-GS-LSSVM outperforms all other standalone machine learning predictive Model for NO2 pollution.

Practical implications

This paper's hybrid model provides a basis for giving an informed decision on the NO2 pollutant avoidance system.

Originality/value

This research installed and used data from 14 IoT emission sensors to develop machine learning predictive models for NO2 pollution concentration.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 2 February 2023

Ulrika Uotila and Arto Saari

Poor indoor air quality (IAQ) contributing to occupants’ health symptoms is a universal, typically ventilation-related, problem in schools. In cold climates, low-cost strategies…

Abstract

Purpose

Poor indoor air quality (IAQ) contributing to occupants’ health symptoms is a universal, typically ventilation-related, problem in schools. In cold climates, low-cost strategies to improve IAQ in a naturally ventilated school are rare since conventional methods, such as window opening, are often inappropriate. This paper aims to present an investigation of strategies to relieve health symptoms among school occupants in naturally ventilated school in Finland.

Design/methodology/approach

A case study approach is adopted to thoroughly investigate the process of generating the alternatives of ventilation redesign in a naturally ventilated school where there have been complaints of health symptoms. First, the potential sources of the occupants’ symptoms are identified. Then, the strategies aiming to reduce the symptoms are compared and evaluated.

Findings

In a naturally ventilated school, health symptoms that are significantly caused by insufficient ventilation can be potentially reduced by implementing a supply and exhaust ventilation system. Alternatively, it is possible to retain the natural ventilation with reduced number of occupants. The selected strategy would depend considerably on the desired number of users, the budget and the possibilities to combine the redesign of ventilation with other refurbishment actions. Furthermore, the risk of poorer indoor air caused by the refurbishment actions must also be addressed and considered.

Practical implications

This study may assist municipal authorities and school directors in decisions concerning improvement of classroom IAQ and elimination of building-related symptoms. This research provides economic aspects of alternative strategies and points out the risks related to major refurbishment actions.

Originality/value

Since this study presents a set of features related to indoor air that contribute to occupants’ health as well as matters to be considered when aiming to decrease occupants’ symptoms, it may be of assistance to municipal authorities and practitioners in providing a healthier indoor environment for pupils and teachers.

Details

Facilities, vol. 41 no. 15/16
Type: Research Article
ISSN: 0263-2772

Keywords

Open Access
Article
Publication date: 14 February 2020

Dwi Purbayanti, Rinny Ardina, Syahrida Dian Ardhany, Rudi Gunawan and Mohammad Rizki Fadhil Pratama

Fish processing by grilling can produce emissions that contain toxic compounds that can have short- and long-term effects on human health. Another study reported that exposure to…

1947

Abstract

Purpose

Fish processing by grilling can produce emissions that contain toxic compounds that can have short- and long-term effects on human health. Another study reported that exposure to air pollutants is hematotoxic. The purpose of this paper is to determine the effect of smoke exposure on fish grill results on hematological parameters.

Design/methodology/approach

The subjects of this study were 90 grilled fish sellers, with 32 processed food sellers who did not sell grill food as a control. The hematological analysis was performed using the Hematology Analyzers KX300 instrument.

Findings

The results showed that the mean value of hematological parameters in the test group was higher than the control group except for the number of lymphocytes and mixed cell parameters.

Originality/value

The content of harmful compounds contained in fish grill smoke can increase hematological value in the blood of exposed individuals, which has the potential for health problems and disease progression.

Details

Journal of Health Research, vol. 34 no. 2
Type: Research Article
ISSN: 2586-940X

Keywords

Open Access
Article
Publication date: 4 November 2020

Soo Min Shin, Song Soo Lim and Yongsung Cho

This study aimed to estimate the economic benefits of PM2.5 emission abatement by Red Pine, Pinus Koraiensis and Quercus, using a metering model analyzing the amount of PM2.5…

Abstract

Purpose

This study aimed to estimate the economic benefits of PM2.5 emission abatement by Red Pine, Pinus Koraiensis and Quercus, using a metering model analyzing the amount of PM2.5 absorption in Korea.

Design/methodology/approach

To estimate the economic effects of PM2.5 adsorptions by trees, the frequency of hospital visits resulting from respiratory and circulatory diseases was estimated using a Probit model based on the data from National Health and Nutrition Survey.

Findings

The results show that Quercus and Pinus Koraiensis absorb and eliminate the largest amount of PM2.5. Reducing 1 ton of PM2.5 emission through the planting of trees leads to lower incidences of respiratory and circulatory diseases equivalent to the amount of 95 million won. When the trees planted are 2-year-old Red Pine, Pinus Koraiensis and Quercus, the resulting economic benefits of the PM2.5 abatement would amount to 481 million won, 173 million won and 1,027 million won, respectively. If the trees are 80 years old, the economic benefits are estimated to be 73 billion won for Red Pine, 103 billion won for Pinus Koraiensis and 38 billion won for Quercus.

Research limitations/implications

One limitation of this study is that the weight of PM2.5 adsorbed by each leaf area entirely depended on the experimental results from a prior study and the values are likely to be different from those actually absorbed in natural surroundings. In addition, because of the lack of data from a domestic survey on the surface of leaf area or the reload flow rate of PM2.5, this study referred to data from foreign research. Unfortunately, this specific data may not reflect climatic and terrain characteristics specific to the target country. We used the annual wind speed to calculate the reload flow rate and elimination volume; however, the figures could be more accurate with hourly or daily climate variations. When estimating the health benefits of changes in PM2.5 emissions on respiratory and circulatory diseases, more segmented access to patients' hospital visits and hospital admissions are desirable. Finally, the study focused on the three major tree species of Korea, however, a more detailed study of PM2.5 reduction by various tree types is needed in the future.

Originality/value

This paper quantitatively assessed the amount of PM2.5 adsorption by each of the three tree species. Then, the economic benefits were calculated in terms of how much money would be saved on hospital visits thanks to the reduced PM2.5 levels and lower incidences of respiratory and circulatory system diseases. The net contribution of this study was to prove the trees' function of reducing PM2.5 as it relates to human health. We focused on the most common trees in Korea and compared them to provide new information on the species.

Details

Forestry Economics Review, vol. 2 no. 1
Type: Research Article
ISSN: 2631-3030

Keywords

Content available
Book part
Publication date: 6 February 2023

Abstract

Details

The Impact of Environmental Emissions and Aggregate Economic Activity on Industry: Theoretical and Empirical Perspectives
Type: Book
ISBN: 978-1-80382-577-9

Content available
Book part
Publication date: 9 June 2022

Abstract

Details

Environmental Sustainability, Growth Trajectory and Gender: Contemporary Issues of Developing Economies
Type: Book
ISBN: 978-1-80262-154-9

1 – 10 of 308