Search results

1 – 10 of 361
Article
Publication date: 19 January 2015

Chao Wang, Guofu Yin, Zhengyu Zhang, Shuiliang Wang, Tao Zhao, Yan Sun and Dangguo Yang

– The purpose of this paper is to introduce a novel method for developing static aeroelastic models based on rapid prototyping for wind tunnel testing.

Abstract

Purpose

The purpose of this paper is to introduce a novel method for developing static aeroelastic models based on rapid prototyping for wind tunnel testing.

Design/methodology/approach

A metal frame and resin covers are applied to a static aeroelastic wind tunnel model, which uses the difference of metal and resin to achieve desired stiffness distribution by the stiffness similarity principle. The metal frame is made by traditional machining, and resin covers are formed by stereolithgraphy. As demonstrated by wind tunnel testing and stiffness measurement, the novel method of design and fabrication of the static aeroelastic model based on stereolithgraphy is practical and feasible, and, compared with that of the traditional static elastic model, is prospective due to its lower costs and shorter period for its design and production, as well as avoiding additional stiffness caused by outer filler.

Findings

This method for developing static aeroelastic wind tunnel model with a metal frame and resin covers is feasible, especially for aeroelastic wind tunnel models with complex external aerodynamic shape, which could be accurately constructed based on rapid prototypes in a shorter time with a much lower cost. The developed static aeroelastic aircraft model with a high aspect ratio shows its stiffness distribution in agreement with the design goals, and it is kept in a good condition through the wind tunnel testing at a Mach number ranging from 0.4 to 0.65.

Research limitations/implications

The contact stiffness between the metal frame and resin covers is difficult to calculate accurately even by using finite element analysis; in addition, the manufacturing errors have some effects on the stiffness distribution of aeroelastic models, especially for small-size models.

Originality/value

The design, fabrication and ground testing of aircraft static aeroelastic models presented here provide accurate stiffness and shape stimulation in a cheaper and sooner way compared with that of traditional aeroelastic models. The ground stiffness measurement uses the photogrammetry, which can provide quick, and precise, evaluation of the actual stiffness distribution of a static aeroelastic model. This study, therefore, expands the applications of rapid prototyping on wind tunnel model fabrication, especially for the practical static aeroelastic wind tunnel tests.

Details

Rapid Prototyping Journal, vol. 21 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 31 August 2012

A.S. Roknizadeh, A.S. Nobari, M. Mohagheghi and H. Shahverdi

The purpose of this paper is to analyze the stability of aeroelastic systems using aeroelastic frequency response function (FRF).

Abstract

Purpose

The purpose of this paper is to analyze the stability of aeroelastic systems using aeroelastic frequency response function (FRF).

Design/methodology/approach

The proposed technique determines the instability boundary of an aeroelastic system based on condition number (CN) of aeroelastic FRF matrix or directly from FRFs data.

Findings

Stability margins of typical section and hingeless helicopter rotor blade in the subsonic flow regimes (quasi‐steady and unsteady models) are determined using proposed techniques as two case studies.

Originality/value

The paper introduces a technique which is applicable not only when aerodynamic and structure analytical models are available but also when there are experimental models for structure and/or aerodynamics, such as impulse response functions data or FRFs data. In other words, the main advantage of the proposed method, besides its simplicity and low memory requirement, is its ability to utilize experimental data.

Details

Aircraft Engineering and Aerospace Technology, vol. 84 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 June 2006

M. Vázquez, A. Dervieux and B. Koobus

To propose an integrated algorithm for aerodynamic shape optimization of aircraft wings under the effect of aeroelastic deformations at supersonic regime.

Abstract

Purpose

To propose an integrated algorithm for aerodynamic shape optimization of aircraft wings under the effect of aeroelastic deformations at supersonic regime.

Design/methodology/approach

A methodology is proposed in which a high‐fidelity aeroelastic analyser and an aerodynamic optimizer are loosely coupled. The shape optimizer is based on a “CAD‐free” approach and an exact gradient method with a single adjoint state. The global iterative process yields optimal shapes in the at‐rest condition (i.e. with the aeroelastic deformations substracted).

Findings

The methodology was tested under different conditions, taking into account a combined optimization goal: to reduce the sonic boom production, while preserving the aerodynamic performances of flexible wings. The objective function model contains both aerodynamic parameters and an acoustic term based on the sonic boom downwards emission.

Practical implications

This paper proposes a shape optimization methodology developed by researchers but aiming at the final strategic goal of creating tools that can be really integrated in design processes.

Originality/value

The paper presents an original loosely coupled method for the shape optimization of flexible wings in which recent and modern techniques are used at different levels of the global algorithm: the aerodynamic optimizer, the aeroelastic analyser, the shape parametrization and the objective function model.

Details

Engineering Computations, vol. 23 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 July 2021

Yonghu Wang, Ray C. Chang and Wei Jiang

The purpose of this paper is to present a quick inspection method based on the post-flight data to examine static aeroelastic behavior for transport aircraft subjected to…

Abstract

Purpose

The purpose of this paper is to present a quick inspection method based on the post-flight data to examine static aeroelastic behavior for transport aircraft subjected to instantaneous high g-loads.

Design/methodology/approach

In the present study, the numerical approach of static aeroelasticity and two verified cases will be presented. The non-linear unsteady aerodynamic models are established through flight data mining and the fuzzy-logic modeling of artificial intelligence techniques based on post-flight data. The first and second derivatives of flight dynamic and static aeroelastic behaviors, respectively, are then estimated by using these aerodynamic models.

Findings

The flight dynamic and static aeroelastic behaviors with instantaneous high g-load for the two transports will be analyzed and make a comparison study. The circumstance of turbulence encounter of the new twin-jet is much serious than that of four-jet transport aircraft, but the characteristic of stability and controllability for the new twin-jet is better than those of the four-jet transport aircraft; the new twin-jet transport is also shown to have very small aeroelastic effects. The static aeroelastic behaviors for the two different types can be assessed by using this method.

Practical implications

As the present study uses the flight data stored in a quick access recorder, an intrusive structural inspection of the post-flight can be avoided. A tentative conclusion is to prove that this method can be adapted to examine the static aeroelastic effects for transport aircraft of different weights, different sizes and different service years in tracking static aeroelastic behavior of existing different types of aircraft. In future research, one can consider to have more issues of other types of aircraft with high composite structure weight.

Originality/value

This method can be used to assist airlines to monitor the variations of flight dynamic and static aeroelastic behaviors as a complementary tool for management to improve aviation safety, operation and operational efficiency.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 July 2017

L. Ebrahimnejad, K.D. Janoyan, D.T. Valentine and P. Marzocca

The application of reduced order models (ROMs) in the aerodynamic/aeroelastic analysis of long-span bridges, unlike the aeronautical structures, has not been extensively studied…

Abstract

Purpose

The application of reduced order models (ROMs) in the aerodynamic/aeroelastic analysis of long-span bridges, unlike the aeronautical structures, has not been extensively studied. ROMs are computationally efficient techniques, which have been widely used for predicting unsteady aerodynamic response of airfoils and wings. This paper aims to discuss the application of a reduced order computational fluid dynamics (CFD) model based on the eigensystem realization algorithm (ERA) in the aeroelastic analysis of the Great Belt Bridge (GBB).

Design/methodology/approach

The aerodynamic impulse response of the GBB section is used to construct the aerodynamic ROM, and then the aerodynamic ROM is coupled with the reduced DOF model of the system to construct the aeroelastic ROM. Aerodynamic coefficients and flutter derivatives are evaluated and compared to those of the advanced discrete vortex method-based CFD code.

Findings

Results demonstrate reasonable prediction power and high computational efficiency of the technique that can serve for preliminary aeroelastic analysis and design of long-span bridges, optimization and control purposes.

Originality/value

The application of a system identification tool like ERA into the aeroelastic analysis of long-span bridges is performed for the first time in this work. Authors have developed their earlier work on the aerodynamic analysis of long-span bridges, published in the Journal of Bridge Engineering, by coupling the aerodynamic forces with reduced DOF of structural system. The high computational efficiency of the technique enables bridge designers to perform preliminary aeroelastic analysis of long-span bridges in less than a minute.

Details

Engineering Computations, vol. 34 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 2022

Dongfeng Li, Zhengzhong Wang, Andrea Da Ronch and Gang Chen

This paper aims to develop an efficient evaluation method to more intuitively and effectively investigate the influence of the wing fuel mass variations because of fuel burn on…

Abstract

Purpose

This paper aims to develop an efficient evaluation method to more intuitively and effectively investigate the influence of the wing fuel mass variations because of fuel burn on transonic aeroelasticity.

Design/methodology/approach

The proposed efficient aeroelastic evaluation method is developed by extending the standard computational fluid dynamics (CFD)-based proper orthogonal decomposition (POD)/reduced order model (ROM).

Findings

The results of this paper show that the proposed aeroelastic efficient evaluation method can accurately and efficiently predict the aeroelastic response and flutter boundary when the wing fuel mass vary because of fuel burn. It also shows that the wing fuel mass variations have a significant effect on transonic aeroelasticity; the flutter speed increases as the wing fuel mass decreases. Without rebuilding an expensive, time-consuming CFD-based POD/ROM for each wing fuel mass variation, the computational cost of the proposed method is reduced obviously. It also shows that the computational efficiency improvement grows linearly with the number of model cases.

Practical implications

The paper presents a potentially powerful tool to more intuitively and effectively investigate the influence of the wing fuel mass variation on transonic aeroelasticity, and the results form a theoretical and methodological basis for further research.

Originality/value

The proposed evaluation method makes it a reality to apply the efficient standard CFD-based POD/ROM to investigate the influence of the wing fuel mass variation because of fuel burn on transonic aeroelasticity. The proposed efficient aeroelastic evaluation method, therefore, is ideally suited to deal with the investigation of the influence of wing fuel mass variations on transonic aeroelasticity and may have the potential to reduce the overall cost of aircraft design.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 October 2012

Emanuele Piccione, Giovanni Bernardini and Massimo Gennaretti

The purpose of this paper is to present the development and application of a numerical formulation for the structural dynamics and aeroelastic analysis of new generation…

3804

Abstract

Purpose

The purpose of this paper is to present the development and application of a numerical formulation for the structural dynamics and aeroelastic analysis of new generation helicopter and tiltrotor rotor blades. These are characterized by a curvilinear elastic axis, typically with the presence of tip sweep and anhedral angles.

Design/methodology/approach

The structural dynamics model implemented is based on nonlinear, flap‐lag‐torsion, rotating beam equations that are valid for slender, homogeneous, isotropic, non‐uniform, twisted blades undergoing moderate displacements. A second‐order approximation scheme for strain‐displacement is adopted. Aerodynamic contributions for aeroelastic applications are derived from sectional theories, with inclusion of wake inflow models to take into account three‐dimensional effects. The numerical integration is obtained through implementation within the COMSOL Multiphysics Finite‐Element‐Method (FEM) software code, considering the elastic axis of arbitrary curvilinear shape.

Findings

The computational tool developed is validated by comparisons with results available in the literature. These demonstrate the capability of the tool to accurately predict structural dynamics and aeroelastic behavior of curved‐axis rotor blades. In particular, the influence of sweep and anhedral angles at the blade tip is successfully captured.

Research limitations/implications

The numerical tool developed is limited to the analysis of isotropic blades, with a simple sectional aerodynamic modeling for aeroelastic applications. However, the flexibility of the process through which the proposed tool has been developed is such that a moderate effort is required for its extension to composite blades and more accurate aerodynamic loads predictions.

Practical implications

The proposed computational solver is a reliable tool for preliminary design and optimal design processes of helicopter and tiltrotor rotor blades.

Originality/value

Computational tools for rotors with advanced‐geometry blades are not commonly available. Therefore, the presentation of a successful way to implement structural dynamics/aeroelastic mathematical formulations for rotor blades with curvilinear elastic axis in highly flexible, multiphysics, FEM‐based, commercial software may be of interest for designers and researchers.

Details

Aircraft Engineering and Aerospace Technology, vol. 84 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 17 November 2021

Rohollah Dehghani Firouz-Abadi and Mohammad Reza Borhan Panah

The purpose of this paper is to analyze the stability of aeroelastic systems using a novel reduced order aeroelastic model.

Abstract

Purpose

The purpose of this paper is to analyze the stability of aeroelastic systems using a novel reduced order aeroelastic model.

Design/methodology/approach

The proposed aeroelastic model is a reduced-order model constructed based on the aerodynamic model identification using the generalized aerodynamic force response and the unsteady boundary element method in various excitation frequency values. Due to the low computational cost and acceptable accuracy of the boundary element method, this method is selected to determine the unsteady time response of the aerodynamic model. Regarding the structural model, the elastic mode shapes of the shell are used.

Findings

Three case studies are investigated by the proposed model. In the first place, a typical two-dimensional section is introduced as a means of verification by approximating the Theodorsen function. As the second test case, the flutter speed of Advisory Group for Aerospace Research and Development 445.6 wing with 45° sweep angle is determined and compared with the experimental test results in the literature. Finally, a complete aircraft is considered to demonstrate the capability of the proposed model in handling complex configurations.

Originality/value

The paper introduces an algorithm to construct an aeroelastic model applicable to any unsteady aerodynamic model including experimental models and modal structural models in the implicit and reduced order form. In other words, the main advantage of the proposed method, further to its simplicity and low computational effort, which can be used as a means of real-time aeroelastic simulation, is its ability to provide aerodynamic and structural models in implicit and reduced order forms.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 March 2018

Promio Charles F., Raja Samikkannu, Niranjan K. Sura and Shanwaz Mulla

Ground vibration testing (GVT) results can be used as system parameters for predicting flutter, which is essential for aeroelastic clearance. This paper aims to compute GVT-based…

Abstract

Purpose

Ground vibration testing (GVT) results can be used as system parameters for predicting flutter, which is essential for aeroelastic clearance. This paper aims to compute GVT-based flutter in time domain, using unsteady air loads by matrix polynomial approximations.

Design/methodology/approach

The experimental parameters, namely, frequencies and mode shapes are interpolated to build an equivalent finite element model. The unsteady aerodynamic forces extracted from MSC NASTRAN are approximated using matrix polynomial approximations. The system matrices are condensed to the required shaker location points to build an aeroelastic reduced order state space model in SIMULINK.

Findings

The computed aerodynamic forces are successfully reduced to few input locations (optimal) for flutter simulation on unknown structural system (where stiffness and mass are not known) through a case study. It is demonstrated that GVT data and the computed unsteady aerodynamic forces of a system are adequate to represent its aeroelastic behaviour.

Practical implications

Airforce of every nation continuously upgrades its fleet with advanced weapon systems (stores), which demands aeroelastic flutter clearance. As the original equipment manufacturers does not provide the design data (stiffness and mass) to its customers, a new methodology to build an aeroelastic system of unknown aircraft is devised.

Originality/value

A hybrid approach is proposed, involving GVT data to build an aeroelastic state space system, using rationally approximated air loads (matrix polynomial approximations) computed on a virtual FE model for ground flutter simulation.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 May 2018

Franciszek Dul

The purpose of this paper is to analyze the active suppression of the nonlinear aeroelastic vibrations of ailerons caused by freeplay by robust H and linear quadratic Gauss (LQG…

Abstract

Purpose

The purpose of this paper is to analyze the active suppression of the nonlinear aeroelastic vibrations of ailerons caused by freeplay by robust H and linear quadratic Gauss (LQG) methods of control in case of incomplete measurements of the state of the system.

Design/methodology/approach

The flexible wing with nonlinear aileron with freeplay is treated as a plant-controller system with H and LQG controllers used to suppress the aeroelastic vibrations. The simulation approach was used for analyzing the impact of completeness of measurements on the efficiency and robustness of the controllers.

Findings

The analysis shows that the H method can be effectively used for suppression of nonlinear aeroelastic vibrations of aileron, although its efficiency depends essentially on completeness and types of measurements. The LQG method is less effective, but it is also able to prevent aileron vibrations by reducing their amplitudes to acceptable, safe level.

Research limitations/implications

Only numerical analysis was carried out for the problem described; thus, the proposed solution is of theoretical value at this stage of analysis, and its application to the real suppression of aeroelastic vibrations requires further research.

Practical implications

The work presents a potentially useful solution to the problem of interest and results are a theoretical basis for further research.

Social implications

This work may lead to a hot debate on the advantages and drawbacks of the active suppression of vibrations in the aeroelasticians community.

Originality/value

The work raises the important questions of practical stabilizability of the nonlinear aeroelastic systems, their dependence on completeness and types of measurements and robustness of the controllers.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 361